Actual source code: ts.c
petsc-3.3-p2 2012-07-13
2: #include <petsc-private/tsimpl.h> /*I "petscts.h" I*/
3: #include <petscdmshell.h>
5: /* Logging support */
6: PetscClassId TS_CLASSID;
7: PetscLogEvent TS_Step, TS_PseudoComputeTimeStep, TS_FunctionEval, TS_JacobianEval;
11: /*
12: TSSetTypeFromOptions - Sets the type of ts from user options.
14: Collective on TS
16: Input Parameter:
17: . ts - The ts
19: Level: intermediate
21: .keywords: TS, set, options, database, type
22: .seealso: TSSetFromOptions(), TSSetType()
23: */
24: static PetscErrorCode TSSetTypeFromOptions(TS ts)
25: {
26: PetscBool opt;
27: const char *defaultType;
28: char typeName[256];
32: if (((PetscObject)ts)->type_name) {
33: defaultType = ((PetscObject)ts)->type_name;
34: } else {
35: defaultType = TSEULER;
36: }
38: if (!TSRegisterAllCalled) {TSRegisterAll(PETSC_NULL);}
39: PetscOptionsList("-ts_type", "TS method"," TSSetType", TSList, defaultType, typeName, 256, &opt);
40: if (opt) {
41: TSSetType(ts, typeName);
42: } else {
43: TSSetType(ts, defaultType);
44: }
45: return(0);
46: }
50: /*@
51: TSSetFromOptions - Sets various TS parameters from user options.
53: Collective on TS
55: Input Parameter:
56: . ts - the TS context obtained from TSCreate()
58: Options Database Keys:
59: + -ts_type <type> - TSEULER, TSBEULER, TSSUNDIALS, TSPSEUDO, TSCN, TSRK, TSTHETA, TSGL, TSSSP
60: . -ts_max_steps maxsteps - maximum number of time-steps to take
61: . -ts_final_time time - maximum time to compute to
62: . -ts_dt dt - initial time step
63: . -ts_monitor - print information at each timestep
64: - -ts_monitor_draw - plot information at each timestep
66: Level: beginner
68: .keywords: TS, timestep, set, options, database
70: .seealso: TSGetType()
71: @*/
72: PetscErrorCode TSSetFromOptions(TS ts)
73: {
74: PetscBool opt,flg;
76: PetscViewer monviewer;
77: char monfilename[PETSC_MAX_PATH_LEN];
78: SNES snes;
79: TSAdapt adapt;
83: PetscObjectOptionsBegin((PetscObject)ts);
84: /* Handle TS type options */
85: TSSetTypeFromOptions(ts);
87: /* Handle generic TS options */
88: PetscOptionsInt("-ts_max_steps","Maximum number of time steps","TSSetDuration",ts->max_steps,&ts->max_steps,PETSC_NULL);
89: PetscOptionsReal("-ts_final_time","Time to run to","TSSetDuration",ts->max_time,&ts->max_time,PETSC_NULL);
90: PetscOptionsReal("-ts_init_time","Initial time","TSSetTime",ts->ptime,&ts->ptime,PETSC_NULL);
91: PetscOptionsReal("-ts_dt","Initial time step","TSSetTimeStep",ts->time_step,&ts->time_step,PETSC_NULL);
92: opt = ts->exact_final_time == PETSC_DECIDE ? PETSC_FALSE : (PetscBool)ts->exact_final_time;
93: PetscOptionsBool("-ts_exact_final_time","Interpolate output to stop exactly at the final time","TSSetExactFinalTime",opt,&opt,&flg);
94: if (flg) {TSSetExactFinalTime(ts,opt);}
95: PetscOptionsInt("-ts_max_snes_failures","Maximum number of nonlinear solve failures","TSSetMaxSNESFailures",ts->max_snes_failures,&ts->max_snes_failures,PETSC_NULL);
96: PetscOptionsInt("-ts_max_reject","Maximum number of step rejections before step fails","TSSetMaxStepRejections",ts->max_reject,&ts->max_reject,PETSC_NULL);
97: PetscOptionsBool("-ts_error_if_step_fails","Error if no step succeeds","TSSetErrorIfStepFails",ts->errorifstepfailed,&ts->errorifstepfailed,PETSC_NULL);
98: PetscOptionsReal("-ts_rtol","Relative tolerance for local truncation error","TSSetTolerances",ts->rtol,&ts->rtol,PETSC_NULL);
99: PetscOptionsReal("-ts_atol","Absolute tolerance for local truncation error","TSSetTolerances",ts->atol,&ts->atol,PETSC_NULL);
101: /* Monitor options */
102: PetscOptionsString("-ts_monitor","Monitor timestep size","TSMonitorDefault","stdout",monfilename,PETSC_MAX_PATH_LEN,&flg);
103: if (flg) {
104: PetscViewerASCIIOpen(((PetscObject)ts)->comm,monfilename,&monviewer);
105: TSMonitorSet(ts,TSMonitorDefault,monviewer,(PetscErrorCode (*)(void**))PetscViewerDestroy);
106: }
107: PetscOptionsString("-ts_monitor_python","Use Python function","TSMonitorSet",0,monfilename,PETSC_MAX_PATH_LEN,&flg);
108: if (flg) {PetscPythonMonitorSet((PetscObject)ts,monfilename);}
110: opt = PETSC_FALSE;
111: PetscOptionsBool("-ts_monitor_draw","Monitor timestep size graphically","TSMonitorLG",opt,&opt,PETSC_NULL);
112: if (opt) {
113: TSMonitorSet(ts,TSMonitorLG,PETSC_NULL,PETSC_NULL);
114: }
115: opt = PETSC_FALSE;
116: PetscOptionsBool("-ts_monitor_solution","Monitor solution graphically","TSMonitorSolution",opt,&opt,PETSC_NULL);
117: if (opt) {
118: void *ctx;
119: TSMonitorSolutionCreate(ts,PETSC_NULL,&ctx);
120: TSMonitorSet(ts,TSMonitorSolution,ctx,TSMonitorSolutionDestroy);
121: }
122: opt = PETSC_FALSE;
123: PetscOptionsString("-ts_monitor_solution_binary","Save each solution to a binary file","TSMonitorSolutionBinary",0,monfilename,PETSC_MAX_PATH_LEN,&flg);
124: if (flg) {
125: PetscViewer ctx;
126: if (monfilename[0]) {
127: PetscViewerBinaryOpen(((PetscObject)ts)->comm,monfilename,FILE_MODE_WRITE,&ctx);
128: } else {
129: ctx = PETSC_VIEWER_BINARY_(((PetscObject)ts)->comm);
130: }
131: TSMonitorSet(ts,TSMonitorSolutionBinary,ctx,(PetscErrorCode (*)(void**))PetscViewerDestroy);
132: }
133: opt = PETSC_FALSE;
134: PetscOptionsString("-ts_monitor_solution_vtk","Save each time step to a binary file, use filename-%%03D.vts","TSMonitorSolutionVTK",0,monfilename,PETSC_MAX_PATH_LEN,&flg);
135: if (flg) {
136: const char *ptr,*ptr2;
137: char *filetemplate;
138: if (!monfilename[0]) SETERRQ(((PetscObject)ts)->comm,PETSC_ERR_USER,"-ts_monitor_solution_vtk requires a file template, e.g. filename-%%03D.vts");
139: /* Do some cursory validation of the input. */
140: PetscStrstr(monfilename,"%",(char**)&ptr);
141: if (!ptr) SETERRQ(((PetscObject)ts)->comm,PETSC_ERR_USER,"-ts_monitor_solution_vtk requires a file template, e.g. filename-%%03D.vts");
142: for (ptr++ ; ptr && *ptr; ptr++) {
143: PetscStrchr("DdiouxX",*ptr,(char**)&ptr2);
144: if (!ptr2 && (*ptr < '0' || '9' < *ptr)) SETERRQ(((PetscObject)ts)->comm,PETSC_ERR_USER,"Invalid file template argument to -ts_monitor_solution_vtk, should look like filename-%%03D.vts");
145: if (ptr2) break;
146: }
147: PetscStrallocpy(monfilename,&filetemplate);
148: TSMonitorSet(ts,TSMonitorSolutionVTK,filetemplate,(PetscErrorCode (*)(void**))TSMonitorSolutionVTKDestroy);
149: }
151: TSGetAdapt(ts,&adapt);
152: TSAdaptSetFromOptions(adapt);
154: TSGetSNES(ts,&snes);
155: if (ts->problem_type == TS_LINEAR) {SNESSetType(snes,SNESKSPONLY);}
157: /* Handle specific TS options */
158: if (ts->ops->setfromoptions) {
159: (*ts->ops->setfromoptions)(ts);
160: }
162: /* process any options handlers added with PetscObjectAddOptionsHandler() */
163: PetscObjectProcessOptionsHandlers((PetscObject)ts);
164: PetscOptionsEnd();
165: return(0);
166: }
171: /*@
172: TSComputeRHSJacobian - Computes the Jacobian matrix that has been
173: set with TSSetRHSJacobian().
175: Collective on TS and Vec
177: Input Parameters:
178: + ts - the TS context
179: . t - current timestep
180: - x - input vector
182: Output Parameters:
183: + A - Jacobian matrix
184: . B - optional preconditioning matrix
185: - flag - flag indicating matrix structure
187: Notes:
188: Most users should not need to explicitly call this routine, as it
189: is used internally within the nonlinear solvers.
191: See KSPSetOperators() for important information about setting the
192: flag parameter.
194: Level: developer
196: .keywords: SNES, compute, Jacobian, matrix
198: .seealso: TSSetRHSJacobian(), KSPSetOperators()
199: @*/
200: PetscErrorCode TSComputeRHSJacobian(TS ts,PetscReal t,Vec X,Mat *A,Mat *B,MatStructure *flg)
201: {
203: PetscInt Xstate;
209: PetscObjectStateQuery((PetscObject)X,&Xstate);
210: if (ts->rhsjacobian.time == t && (ts->problem_type == TS_LINEAR || (ts->rhsjacobian.X == X && ts->rhsjacobian.Xstate == Xstate))) {
211: *flg = ts->rhsjacobian.mstructure;
212: return(0);
213: }
215: if (!ts->userops->rhsjacobian && !ts->userops->ijacobian) SETERRQ(((PetscObject)ts)->comm,PETSC_ERR_USER,"Must call TSSetRHSJacobian() and / or TSSetIJacobian()");
217: if (ts->userops->rhsjacobian) {
218: PetscLogEventBegin(TS_JacobianEval,ts,X,*A,*B);
219: *flg = DIFFERENT_NONZERO_PATTERN;
220: PetscStackPush("TS user Jacobian function");
221: (*ts->userops->rhsjacobian)(ts,t,X,A,B,flg,ts->jacP);
222: PetscStackPop;
223: PetscLogEventEnd(TS_JacobianEval,ts,X,*A,*B);
224: /* make sure user returned a correct Jacobian and preconditioner */
227: } else {
228: MatZeroEntries(*A);
229: if (*A != *B) {MatZeroEntries(*B);}
230: *flg = SAME_NONZERO_PATTERN;
231: }
232: ts->rhsjacobian.time = t;
233: ts->rhsjacobian.X = X;
234: PetscObjectStateQuery((PetscObject)X,&ts->rhsjacobian.Xstate);
235: ts->rhsjacobian.mstructure = *flg;
236: return(0);
237: }
241: /*@
242: TSComputeRHSFunction - Evaluates the right-hand-side function.
244: Collective on TS and Vec
246: Input Parameters:
247: + ts - the TS context
248: . t - current time
249: - x - state vector
251: Output Parameter:
252: . y - right hand side
254: Note:
255: Most users should not need to explicitly call this routine, as it
256: is used internally within the nonlinear solvers.
258: Level: developer
260: .keywords: TS, compute
262: .seealso: TSSetRHSFunction(), TSComputeIFunction()
263: @*/
264: PetscErrorCode TSComputeRHSFunction(TS ts,PetscReal t,Vec x,Vec y)
265: {
273: if (!ts->userops->rhsfunction && !ts->userops->ifunction) SETERRQ(((PetscObject)ts)->comm,PETSC_ERR_USER,"Must call TSSetRHSFunction() and / or TSSetIFunction()");
275: PetscLogEventBegin(TS_FunctionEval,ts,x,y,0);
276: if (ts->userops->rhsfunction) {
277: PetscStackPush("TS user right-hand-side function");
278: (*ts->userops->rhsfunction)(ts,t,x,y,ts->funP);
279: PetscStackPop;
280: } else {
281: VecZeroEntries(y);
282: }
284: PetscLogEventEnd(TS_FunctionEval,ts,x,y,0);
285: return(0);
286: }
290: static PetscErrorCode TSGetRHSVec_Private(TS ts,Vec *Frhs)
291: {
292: Vec F;
296: *Frhs = PETSC_NULL;
297: TSGetIFunction(ts,&F,PETSC_NULL,PETSC_NULL);
298: if (!ts->Frhs) {
299: VecDuplicate(F,&ts->Frhs);
300: }
301: *Frhs = ts->Frhs;
302: return(0);
303: }
307: static PetscErrorCode TSGetRHSMats_Private(TS ts,Mat *Arhs,Mat *Brhs)
308: {
309: Mat A,B;
313: TSGetIJacobian(ts,&A,&B,PETSC_NULL,PETSC_NULL);
314: if (Arhs) {
315: if (!ts->Arhs) {
316: MatDuplicate(A,MAT_DO_NOT_COPY_VALUES,&ts->Arhs);
317: }
318: *Arhs = ts->Arhs;
319: }
320: if (Brhs) {
321: if (!ts->Brhs) {
322: MatDuplicate(B,MAT_DO_NOT_COPY_VALUES,&ts->Brhs);
323: }
324: *Brhs = ts->Brhs;
325: }
326: return(0);
327: }
331: /*@
332: TSComputeIFunction - Evaluates the DAE residual written in implicit form F(t,X,Xdot)=0
334: Collective on TS and Vec
336: Input Parameters:
337: + ts - the TS context
338: . t - current time
339: . X - state vector
340: . Xdot - time derivative of state vector
341: - imex - flag indicates if the method is IMEX so that the RHSFunction should be kept separate
343: Output Parameter:
344: . Y - right hand side
346: Note:
347: Most users should not need to explicitly call this routine, as it
348: is used internally within the nonlinear solvers.
350: If the user did did not write their equations in implicit form, this
351: function recasts them in implicit form.
353: Level: developer
355: .keywords: TS, compute
357: .seealso: TSSetIFunction(), TSComputeRHSFunction()
358: @*/
359: PetscErrorCode TSComputeIFunction(TS ts,PetscReal t,Vec X,Vec Xdot,Vec Y,PetscBool imex)
360: {
369: if (!ts->userops->rhsfunction && !ts->userops->ifunction) SETERRQ(((PetscObject)ts)->comm,PETSC_ERR_USER,"Must call TSSetRHSFunction() and / or TSSetIFunction()");
371: PetscLogEventBegin(TS_FunctionEval,ts,X,Xdot,Y);
372: if (ts->userops->ifunction) {
373: PetscStackPush("TS user implicit function");
374: (*ts->userops->ifunction)(ts,t,X,Xdot,Y,ts->funP);
375: PetscStackPop;
376: }
377: if (imex) {
378: if (!ts->userops->ifunction) {
379: VecCopy(Xdot,Y);
380: }
381: } else if (ts->userops->rhsfunction) {
382: if (ts->userops->ifunction) {
383: Vec Frhs;
384: TSGetRHSVec_Private(ts,&Frhs);
385: TSComputeRHSFunction(ts,t,X,Frhs);
386: VecAXPY(Y,-1,Frhs);
387: } else {
388: TSComputeRHSFunction(ts,t,X,Y);
389: VecAYPX(Y,-1,Xdot);
390: }
391: }
392: PetscLogEventEnd(TS_FunctionEval,ts,X,Xdot,Y);
393: return(0);
394: }
398: /*@
399: TSComputeIJacobian - Evaluates the Jacobian of the DAE
401: Collective on TS and Vec
403: Input
404: Input Parameters:
405: + ts - the TS context
406: . t - current timestep
407: . X - state vector
408: . Xdot - time derivative of state vector
409: . shift - shift to apply, see note below
410: - imex - flag indicates if the method is IMEX so that the RHSJacobian should be kept separate
412: Output Parameters:
413: + A - Jacobian matrix
414: . B - optional preconditioning matrix
415: - flag - flag indicating matrix structure
417: Notes:
418: If F(t,X,Xdot)=0 is the DAE, the required Jacobian is
420: dF/dX + shift*dF/dXdot
422: Most users should not need to explicitly call this routine, as it
423: is used internally within the nonlinear solvers.
425: Level: developer
427: .keywords: TS, compute, Jacobian, matrix
429: .seealso: TSSetIJacobian()
430: @*/
431: PetscErrorCode TSComputeIJacobian(TS ts,PetscReal t,Vec X,Vec Xdot,PetscReal shift,Mat *A,Mat *B,MatStructure *flg,PetscBool imex)
432: {
433: PetscInt Xstate, Xdotstate;
445: PetscObjectStateQuery((PetscObject)X,&Xstate);
446: PetscObjectStateQuery((PetscObject)Xdot,&Xdotstate);
447: if (ts->ijacobian.time == t && (ts->problem_type == TS_LINEAR || (ts->ijacobian.X == X && ts->ijacobian.Xstate == Xstate && ts->ijacobian.Xdot == Xdot && ts->ijacobian.Xdotstate == Xdotstate && ts->ijacobian.imex == imex))) {
448: *flg = ts->ijacobian.mstructure;
449: MatScale(*A, shift / ts->ijacobian.shift);
450: return(0);
451: }
453: if (!ts->userops->rhsjacobian && !ts->userops->ijacobian) SETERRQ(((PetscObject)ts)->comm,PETSC_ERR_USER,"Must call TSSetRHSJacobian() and / or TSSetIJacobian()");
455: *flg = SAME_NONZERO_PATTERN; /* In case we're solving a linear problem in which case it wouldn't get initialized below. */
456: PetscLogEventBegin(TS_JacobianEval,ts,X,*A,*B);
457: if (ts->userops->ijacobian) {
458: *flg = DIFFERENT_NONZERO_PATTERN;
459: PetscStackPush("TS user implicit Jacobian");
460: (*ts->userops->ijacobian)(ts,t,X,Xdot,shift,A,B,flg,ts->jacP);
461: PetscStackPop;
462: /* make sure user returned a correct Jacobian and preconditioner */
465: }
466: if (imex) {
467: if (!ts->userops->ijacobian) { /* system was written as Xdot = F(t,X) */
468: MatZeroEntries(*A);
469: MatShift(*A,shift);
470: if (*A != *B) {
471: MatZeroEntries(*B);
472: MatShift(*B,shift);
473: }
474: *flg = SAME_PRECONDITIONER;
475: }
476: } else {
477: if (!ts->userops->ijacobian) {
478: TSComputeRHSJacobian(ts,t,X,A,B,flg);
479: MatScale(*A,-1);
480: MatShift(*A,shift);
481: if (*A != *B) {
482: MatScale(*B,-1);
483: MatShift(*B,shift);
484: }
485: } else if (ts->userops->rhsjacobian) {
486: Mat Arhs,Brhs;
487: MatStructure axpy,flg2 = DIFFERENT_NONZERO_PATTERN;
488: TSGetRHSMats_Private(ts,&Arhs,&Brhs);
489: TSComputeRHSJacobian(ts,t,X,&Arhs,&Brhs,&flg2);
490: axpy = (*flg == flg2) ? SAME_NONZERO_PATTERN : DIFFERENT_NONZERO_PATTERN;
491: MatAXPY(*A,-1,Arhs,axpy);
492: if (*A != *B) {
493: MatAXPY(*B,-1,Brhs,axpy);
494: }
495: *flg = PetscMin(*flg,flg2);
496: }
497: }
499: ts->ijacobian.time = t;
500: ts->ijacobian.X = X;
501: ts->ijacobian.Xdot = Xdot;
502: PetscObjectStateQuery((PetscObject)X,&ts->ijacobian.Xstate);
503: PetscObjectStateQuery((PetscObject)Xdot,&ts->ijacobian.Xdotstate);
504: ts->ijacobian.shift = shift;
505: ts->ijacobian.imex = imex;
506: ts->ijacobian.mstructure = *flg;
507: PetscLogEventEnd(TS_JacobianEval,ts,X,*A,*B);
508: return(0);
509: }
513: /*@C
514: TSSetRHSFunction - Sets the routine for evaluating the function,
515: F(t,u), where U_t = F(t,u).
517: Logically Collective on TS
519: Input Parameters:
520: + ts - the TS context obtained from TSCreate()
521: . r - vector to put the computed right hand side (or PETSC_NULL to have it created)
522: . f - routine for evaluating the right-hand-side function
523: - ctx - [optional] user-defined context for private data for the
524: function evaluation routine (may be PETSC_NULL)
526: Calling sequence of func:
527: $ func (TS ts,PetscReal t,Vec u,Vec F,void *ctx);
529: + t - current timestep
530: . u - input vector
531: . F - function vector
532: - ctx - [optional] user-defined function context
534: Level: beginner
536: .keywords: TS, timestep, set, right-hand-side, function
538: .seealso: TSSetRHSJacobian(), TSSetIJacobian()
539: @*/
540: PetscErrorCode TSSetRHSFunction(TS ts,Vec r,PetscErrorCode (*f)(TS,PetscReal,Vec,Vec,void*),void *ctx)
541: {
543: SNES snes;
544: Vec ralloc = PETSC_NULL;
549: if (f) ts->userops->rhsfunction = f;
550: if (ctx) ts->funP = ctx;
551: TSGetSNES(ts,&snes);
552: if (!r && !ts->dm && ts->vec_sol) {
553: VecDuplicate(ts->vec_sol,&ralloc);
554: r = ralloc;
555: }
556: SNESSetFunction(snes,r,SNESTSFormFunction,ts);
557: VecDestroy(&ralloc);
558: return(0);
559: }
563: /*@C
564: TSSetRHSJacobian - Sets the function to compute the Jacobian of F,
565: where U_t = F(U,t), as well as the location to store the matrix.
567: Logically Collective on TS
569: Input Parameters:
570: + ts - the TS context obtained from TSCreate()
571: . A - Jacobian matrix
572: . B - preconditioner matrix (usually same as A)
573: . f - the Jacobian evaluation routine
574: - ctx - [optional] user-defined context for private data for the
575: Jacobian evaluation routine (may be PETSC_NULL)
577: Calling sequence of func:
578: $ func (TS ts,PetscReal t,Vec u,Mat *A,Mat *B,MatStructure *flag,void *ctx);
580: + t - current timestep
581: . u - input vector
582: . A - matrix A, where U_t = A(t)u
583: . B - preconditioner matrix, usually the same as A
584: . flag - flag indicating information about the preconditioner matrix
585: structure (same as flag in KSPSetOperators())
586: - ctx - [optional] user-defined context for matrix evaluation routine
588: Notes:
589: See KSPSetOperators() for important information about setting the flag
590: output parameter in the routine func(). Be sure to read this information!
592: The routine func() takes Mat * as the matrix arguments rather than Mat.
593: This allows the matrix evaluation routine to replace A and/or B with a
594: completely new matrix structure (not just different matrix elements)
595: when appropriate, for instance, if the nonzero structure is changing
596: throughout the global iterations.
598: Level: beginner
599:
600: .keywords: TS, timestep, set, right-hand-side, Jacobian
602: .seealso: SNESDefaultComputeJacobianColor(), TSSetRHSFunction()
604: @*/
605: PetscErrorCode TSSetRHSJacobian(TS ts,Mat A,Mat B,TSRHSJacobian f,void *ctx)
606: {
608: SNES snes;
617: if (f) ts->userops->rhsjacobian = f;
618: if (ctx) ts->jacP = ctx;
619: TSGetSNES(ts,&snes);
620: if (!ts->userops->ijacobian) {
621: SNESSetJacobian(snes,A,B,SNESTSFormJacobian,ts);
622: }
623: if (A) {
624: PetscObjectReference((PetscObject)A);
625: MatDestroy(&ts->Arhs);
626: ts->Arhs = A;
627: }
628: if (B) {
629: PetscObjectReference((PetscObject)B);
630: MatDestroy(&ts->Brhs);
631: ts->Brhs = B;
632: }
633: return(0);
634: }
639: /*@C
640: TSSetIFunction - Set the function to compute F(t,U,U_t) where F = 0 is the DAE to be solved.
642: Logically Collective on TS
644: Input Parameters:
645: + ts - the TS context obtained from TSCreate()
646: . r - vector to hold the residual (or PETSC_NULL to have it created internally)
647: . f - the function evaluation routine
648: - ctx - user-defined context for private data for the function evaluation routine (may be PETSC_NULL)
650: Calling sequence of f:
651: $ f(TS ts,PetscReal t,Vec u,Vec u_t,Vec F,ctx);
653: + t - time at step/stage being solved
654: . u - state vector
655: . u_t - time derivative of state vector
656: . F - function vector
657: - ctx - [optional] user-defined context for matrix evaluation routine
659: Important:
660: The user MUST call either this routine, TSSetRHSFunction(). This routine must be used when not solving an ODE, for example a DAE.
662: Level: beginner
664: .keywords: TS, timestep, set, DAE, Jacobian
666: .seealso: TSSetRHSJacobian(), TSSetRHSFunction(), TSSetIJacobian()
667: @*/
668: PetscErrorCode TSSetIFunction(TS ts,Vec res,TSIFunction f,void *ctx)
669: {
671: SNES snes;
672: Vec resalloc = PETSC_NULL;
677: if (f) ts->userops->ifunction = f;
678: if (ctx) ts->funP = ctx;
679: TSGetSNES(ts,&snes);
680: if (!res && !ts->dm && ts->vec_sol) {
681: VecDuplicate(ts->vec_sol,&resalloc);
682: res = resalloc;
683: }
684: SNESSetFunction(snes,res,SNESTSFormFunction,ts);
685: VecDestroy(&resalloc);
686: return(0);
687: }
691: /*@C
692: TSGetIFunction - Returns the vector where the implicit residual is stored and the function/contex to compute it.
694: Not Collective
696: Input Parameter:
697: . ts - the TS context
699: Output Parameter:
700: + r - vector to hold residual (or PETSC_NULL)
701: . func - the function to compute residual (or PETSC_NULL)
702: - ctx - the function context (or PETSC_NULL)
704: Level: advanced
706: .keywords: TS, nonlinear, get, function
708: .seealso: TSSetIFunction(), SNESGetFunction()
709: @*/
710: PetscErrorCode TSGetIFunction(TS ts,Vec *r,TSIFunction *func,void **ctx)
711: {
713: SNES snes;
717: TSGetSNES(ts,&snes);
718: SNESGetFunction(snes,r,PETSC_NULL,PETSC_NULL);
719: if (func) *func = ts->userops->ifunction;
720: if (ctx) *ctx = ts->funP;
721: return(0);
722: }
726: /*@C
727: TSGetRHSFunction - Returns the vector where the right hand side is stored and the function/context to compute it.
729: Not Collective
731: Input Parameter:
732: . ts - the TS context
734: Output Parameter:
735: + r - vector to hold computed right hand side (or PETSC_NULL)
736: . func - the function to compute right hand side (or PETSC_NULL)
737: - ctx - the function context (or PETSC_NULL)
739: Level: advanced
741: .keywords: TS, nonlinear, get, function
743: .seealso: TSSetRhsfunction(), SNESGetFunction()
744: @*/
745: PetscErrorCode TSGetRHSFunction(TS ts,Vec *r,TSRHSFunction *func,void **ctx)
746: {
748: SNES snes;
752: TSGetSNES(ts,&snes);
753: SNESGetFunction(snes,r,PETSC_NULL,PETSC_NULL);
754: if (func) *func = ts->userops->rhsfunction;
755: if (ctx) *ctx = ts->funP;
756: return(0);
757: }
761: /*@C
762: TSSetIJacobian - Set the function to compute the matrix dF/dU + a*dF/dU_t where F(t,U,U_t) is the function
763: you provided with TSSetIFunction().
765: Logically Collective on TS
767: Input Parameters:
768: + ts - the TS context obtained from TSCreate()
769: . A - Jacobian matrix
770: . B - preconditioning matrix for A (may be same as A)
771: . f - the Jacobian evaluation routine
772: - ctx - user-defined context for private data for the Jacobian evaluation routine (may be PETSC_NULL)
774: Calling sequence of f:
775: $ f(TS ts,PetscReal t,Vec U,Vec U_t,PetscReal a,Mat *A,Mat *B,MatStructure *flag,void *ctx);
777: + t - time at step/stage being solved
778: . U - state vector
779: . U_t - time derivative of state vector
780: . a - shift
781: . A - Jacobian of G(U) = F(t,U,W+a*U), equivalent to dF/dU + a*dF/dU_t
782: . B - preconditioning matrix for A, may be same as A
783: . flag - flag indicating information about the preconditioner matrix
784: structure (same as flag in KSPSetOperators())
785: - ctx - [optional] user-defined context for matrix evaluation routine
787: Notes:
788: The matrices A and B are exactly the matrices that are used by SNES for the nonlinear solve.
790: The matrix dF/dU + a*dF/dU_t you provide turns out to be
791: the Jacobian of G(U) = F(t,U,W+a*U) where F(t,U,U_t) = 0 is the DAE to be solved.
792: The time integrator internally approximates U_t by W+a*U where the positive "shift"
793: a and vector W depend on the integration method, step size, and past states. For example with
794: the backward Euler method a = 1/dt and W = -a*U(previous timestep) so
795: W + a*U = a*(U - U(previous timestep)) = (U - U(previous timestep))/dt
797: Level: beginner
799: .keywords: TS, timestep, DAE, Jacobian
801: .seealso: TSSetIFunction(), TSSetRHSJacobian(), SNESDefaultComputeJacobianColor(), SNESDefaultComputeJacobian()
803: @*/
804: PetscErrorCode TSSetIJacobian(TS ts,Mat A,Mat B,TSIJacobian f,void *ctx)
805: {
807: SNES snes;
815: if (f) ts->userops->ijacobian = f;
816: if (ctx) ts->jacP = ctx;
817: TSGetSNES(ts,&snes);
818: SNESSetJacobian(snes,A,B,SNESTSFormJacobian,ts);
819: return(0);
820: }
824: /*@C
825: TSView - Prints the TS data structure.
827: Collective on TS
829: Input Parameters:
830: + ts - the TS context obtained from TSCreate()
831: - viewer - visualization context
833: Options Database Key:
834: . -ts_view - calls TSView() at end of TSStep()
836: Notes:
837: The available visualization contexts include
838: + PETSC_VIEWER_STDOUT_SELF - standard output (default)
839: - PETSC_VIEWER_STDOUT_WORLD - synchronized standard
840: output where only the first processor opens
841: the file. All other processors send their
842: data to the first processor to print.
844: The user can open an alternative visualization context with
845: PetscViewerASCIIOpen() - output to a specified file.
847: Level: beginner
849: .keywords: TS, timestep, view
851: .seealso: PetscViewerASCIIOpen()
852: @*/
853: PetscErrorCode TSView(TS ts,PetscViewer viewer)
854: {
856: const TSType type;
857: PetscBool iascii,isstring,isundials;
861: if (!viewer) {
862: PetscViewerASCIIGetStdout(((PetscObject)ts)->comm,&viewer);
863: }
867: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
868: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERSTRING,&isstring);
869: if (iascii) {
870: PetscObjectPrintClassNamePrefixType((PetscObject)ts,viewer,"TS Object");
871: PetscViewerASCIIPrintf(viewer," maximum steps=%D\n",ts->max_steps);
872: PetscViewerASCIIPrintf(viewer," maximum time=%G\n",ts->max_time);
873: if (ts->problem_type == TS_NONLINEAR) {
874: PetscViewerASCIIPrintf(viewer," total number of nonlinear solver iterations=%D\n",ts->snes_its);
875: PetscViewerASCIIPrintf(viewer," total number of nonlinear solve failures=%D\n",ts->num_snes_failures);
876: }
877: PetscViewerASCIIPrintf(viewer," total number of linear solver iterations=%D\n",ts->ksp_its);
878: PetscViewerASCIIPrintf(viewer," total number of rejected steps=%D\n",ts->reject);
879: if (ts->ops->view) {
880: PetscViewerASCIIPushTab(viewer);
881: (*ts->ops->view)(ts,viewer);
882: PetscViewerASCIIPopTab(viewer);
883: }
884: } else if (isstring) {
885: TSGetType(ts,&type);
886: PetscViewerStringSPrintf(viewer," %-7.7s",type);
887: }
888: PetscViewerASCIIPushTab(viewer);
889: PetscObjectTypeCompare((PetscObject)ts,TSSUNDIALS,&isundials);
890: PetscViewerASCIIPopTab(viewer);
891: return(0);
892: }
897: /*@
898: TSSetApplicationContext - Sets an optional user-defined context for
899: the timesteppers.
901: Logically Collective on TS
903: Input Parameters:
904: + ts - the TS context obtained from TSCreate()
905: - usrP - optional user context
907: Level: intermediate
909: .keywords: TS, timestep, set, application, context
911: .seealso: TSGetApplicationContext()
912: @*/
913: PetscErrorCode TSSetApplicationContext(TS ts,void *usrP)
914: {
917: ts->user = usrP;
918: return(0);
919: }
923: /*@
924: TSGetApplicationContext - Gets the user-defined context for the
925: timestepper.
927: Not Collective
929: Input Parameter:
930: . ts - the TS context obtained from TSCreate()
932: Output Parameter:
933: . usrP - user context
935: Level: intermediate
937: .keywords: TS, timestep, get, application, context
939: .seealso: TSSetApplicationContext()
940: @*/
941: PetscErrorCode TSGetApplicationContext(TS ts,void *usrP)
942: {
945: *(void**)usrP = ts->user;
946: return(0);
947: }
951: /*@
952: TSGetTimeStepNumber - Gets the current number of timesteps.
954: Not Collective
956: Input Parameter:
957: . ts - the TS context obtained from TSCreate()
959: Output Parameter:
960: . iter - number steps so far
962: Level: intermediate
964: .keywords: TS, timestep, get, iteration, number
965: @*/
966: PetscErrorCode TSGetTimeStepNumber(TS ts,PetscInt* iter)
967: {
971: *iter = ts->steps;
972: return(0);
973: }
977: /*@
978: TSSetInitialTimeStep - Sets the initial timestep to be used,
979: as well as the initial time.
981: Logically Collective on TS
983: Input Parameters:
984: + ts - the TS context obtained from TSCreate()
985: . initial_time - the initial time
986: - time_step - the size of the timestep
988: Level: intermediate
990: .seealso: TSSetTimeStep(), TSGetTimeStep()
992: .keywords: TS, set, initial, timestep
993: @*/
994: PetscErrorCode TSSetInitialTimeStep(TS ts,PetscReal initial_time,PetscReal time_step)
995: {
1000: TSSetTimeStep(ts,time_step);
1001: TSSetTime(ts,initial_time);
1002: return(0);
1003: }
1007: /*@
1008: TSSetTimeStep - Allows one to reset the timestep at any time,
1009: useful for simple pseudo-timestepping codes.
1011: Logically Collective on TS
1013: Input Parameters:
1014: + ts - the TS context obtained from TSCreate()
1015: - time_step - the size of the timestep
1017: Level: intermediate
1019: .seealso: TSSetInitialTimeStep(), TSGetTimeStep()
1021: .keywords: TS, set, timestep
1022: @*/
1023: PetscErrorCode TSSetTimeStep(TS ts,PetscReal time_step)
1024: {
1028: ts->time_step = time_step;
1029: return(0);
1030: }
1034: /*@
1035: TSSetExactFinalTime - Determines whether to interpolate solution to the
1036: exact final time requested by the user or just returns it at the final time
1037: it computed.
1039: Logically Collective on TS
1041: Input Parameter:
1042: + ts - the time-step context
1043: - ft - PETSC_TRUE if interpolates, else PETSC_FALSE
1045: Level: beginner
1047: .seealso: TSSetDuration()
1048: @*/
1049: PetscErrorCode TSSetExactFinalTime(TS ts,PetscBool flg)
1050: {
1055: ts->exact_final_time = flg;
1056: return(0);
1057: }
1061: /*@
1062: TSGetTimeStep - Gets the current timestep size.
1064: Not Collective
1066: Input Parameter:
1067: . ts - the TS context obtained from TSCreate()
1069: Output Parameter:
1070: . dt - the current timestep size
1072: Level: intermediate
1074: .seealso: TSSetInitialTimeStep(), TSGetTimeStep()
1076: .keywords: TS, get, timestep
1077: @*/
1078: PetscErrorCode TSGetTimeStep(TS ts,PetscReal* dt)
1079: {
1083: *dt = ts->time_step;
1084: return(0);
1085: }
1089: /*@
1090: TSGetSolution - Returns the solution at the present timestep. It
1091: is valid to call this routine inside the function that you are evaluating
1092: in order to move to the new timestep. This vector not changed until
1093: the solution at the next timestep has been calculated.
1095: Not Collective, but Vec returned is parallel if TS is parallel
1097: Input Parameter:
1098: . ts - the TS context obtained from TSCreate()
1100: Output Parameter:
1101: . v - the vector containing the solution
1103: Level: intermediate
1105: .seealso: TSGetTimeStep()
1107: .keywords: TS, timestep, get, solution
1108: @*/
1109: PetscErrorCode TSGetSolution(TS ts,Vec *v)
1110: {
1114: *v = ts->vec_sol;
1115: return(0);
1116: }
1118: /* ----- Routines to initialize and destroy a timestepper ---- */
1121: /*@
1122: TSSetProblemType - Sets the type of problem to be solved.
1124: Not collective
1126: Input Parameters:
1127: + ts - The TS
1128: - type - One of TS_LINEAR, TS_NONLINEAR where these types refer to problems of the forms
1129: .vb
1130: U_t = A U
1131: U_t = A(t) U
1132: U_t = F(t,U)
1133: .ve
1135: Level: beginner
1137: .keywords: TS, problem type
1138: .seealso: TSSetUp(), TSProblemType, TS
1139: @*/
1140: PetscErrorCode TSSetProblemType(TS ts, TSProblemType type)
1141: {
1146: ts->problem_type = type;
1147: if (type == TS_LINEAR) {
1148: SNES snes;
1149: TSGetSNES(ts,&snes);
1150: SNESSetType(snes,SNESKSPONLY);
1151: }
1152: return(0);
1153: }
1157: /*@C
1158: TSGetProblemType - Gets the type of problem to be solved.
1160: Not collective
1162: Input Parameter:
1163: . ts - The TS
1165: Output Parameter:
1166: . type - One of TS_LINEAR, TS_NONLINEAR where these types refer to problems of the forms
1167: .vb
1168: M U_t = A U
1169: M(t) U_t = A(t) U
1170: U_t = F(t,U)
1171: .ve
1173: Level: beginner
1175: .keywords: TS, problem type
1176: .seealso: TSSetUp(), TSProblemType, TS
1177: @*/
1178: PetscErrorCode TSGetProblemType(TS ts, TSProblemType *type)
1179: {
1183: *type = ts->problem_type;
1184: return(0);
1185: }
1189: /*@
1190: TSSetUp - Sets up the internal data structures for the later use
1191: of a timestepper.
1193: Collective on TS
1195: Input Parameter:
1196: . ts - the TS context obtained from TSCreate()
1198: Notes:
1199: For basic use of the TS solvers the user need not explicitly call
1200: TSSetUp(), since these actions will automatically occur during
1201: the call to TSStep(). However, if one wishes to control this
1202: phase separately, TSSetUp() should be called after TSCreate()
1203: and optional routines of the form TSSetXXX(), but before TSStep().
1205: Level: advanced
1207: .keywords: TS, timestep, setup
1209: .seealso: TSCreate(), TSStep(), TSDestroy()
1210: @*/
1211: PetscErrorCode TSSetUp(TS ts)
1212: {
1217: if (ts->setupcalled) return(0);
1219: if (!((PetscObject)ts)->type_name) {
1220: TSSetType(ts,TSEULER);
1221: }
1222: if (ts->exact_final_time == PETSC_DECIDE) ts->exact_final_time = PETSC_FALSE;
1224: if (!ts->vec_sol) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Must call TSSetSolution() first");
1226: TSGetAdapt(ts,&ts->adapt);
1228: if (ts->ops->setup) {
1229: (*ts->ops->setup)(ts);
1230: }
1232: ts->setupcalled = PETSC_TRUE;
1233: return(0);
1234: }
1238: /*@
1239: TSReset - Resets a TS context and removes any allocated Vecs and Mats.
1241: Collective on TS
1243: Input Parameter:
1244: . ts - the TS context obtained from TSCreate()
1246: Level: beginner
1248: .keywords: TS, timestep, reset
1250: .seealso: TSCreate(), TSSetup(), TSDestroy()
1251: @*/
1252: PetscErrorCode TSReset(TS ts)
1253: {
1258: if (ts->ops->reset) {
1259: (*ts->ops->reset)(ts);
1260: }
1261: if (ts->snes) {SNESReset(ts->snes);}
1262: MatDestroy(&ts->Arhs);
1263: MatDestroy(&ts->Brhs);
1264: VecDestroy(&ts->Frhs);
1265: VecDestroy(&ts->vec_sol);
1266: VecDestroy(&ts->vatol);
1267: VecDestroy(&ts->vrtol);
1268: VecDestroyVecs(ts->nwork,&ts->work);
1269: ts->setupcalled = PETSC_FALSE;
1270: return(0);
1271: }
1275: /*@
1276: TSDestroy - Destroys the timestepper context that was created
1277: with TSCreate().
1279: Collective on TS
1281: Input Parameter:
1282: . ts - the TS context obtained from TSCreate()
1284: Level: beginner
1286: .keywords: TS, timestepper, destroy
1288: .seealso: TSCreate(), TSSetUp(), TSSolve()
1289: @*/
1290: PetscErrorCode TSDestroy(TS *ts)
1291: {
1295: if (!*ts) return(0);
1297: if (--((PetscObject)(*ts))->refct > 0) {*ts = 0; return(0);}
1299: TSReset((*ts));
1301: /* if memory was published with AMS then destroy it */
1302: PetscObjectDepublish((*ts));
1303: if ((*ts)->ops->destroy) {(*(*ts)->ops->destroy)((*ts));}
1305: TSAdaptDestroy(&(*ts)->adapt);
1306: SNESDestroy(&(*ts)->snes);
1307: DMDestroy(&(*ts)->dm);
1308: TSMonitorCancel((*ts));
1310: PetscFree((*ts)->userops);
1312: PetscHeaderDestroy(ts);
1313: return(0);
1314: }
1318: /*@
1319: TSGetSNES - Returns the SNES (nonlinear solver) associated with
1320: a TS (timestepper) context. Valid only for nonlinear problems.
1322: Not Collective, but SNES is parallel if TS is parallel
1324: Input Parameter:
1325: . ts - the TS context obtained from TSCreate()
1327: Output Parameter:
1328: . snes - the nonlinear solver context
1330: Notes:
1331: The user can then directly manipulate the SNES context to set various
1332: options, etc. Likewise, the user can then extract and manipulate the
1333: KSP, KSP, and PC contexts as well.
1335: TSGetSNES() does not work for integrators that do not use SNES; in
1336: this case TSGetSNES() returns PETSC_NULL in snes.
1338: Level: beginner
1340: .keywords: timestep, get, SNES
1341: @*/
1342: PetscErrorCode TSGetSNES(TS ts,SNES *snes)
1343: {
1349: if (!ts->snes) {
1350: SNESCreate(((PetscObject)ts)->comm,&ts->snes);
1351: PetscLogObjectParent(ts,ts->snes);
1352: PetscObjectIncrementTabLevel((PetscObject)ts->snes,(PetscObject)ts,1);
1353: if (ts->dm) {SNESSetDM(ts->snes,ts->dm);}
1354: if (ts->problem_type == TS_LINEAR) {
1355: SNESSetType(ts->snes,SNESKSPONLY);
1356: }
1357: }
1358: *snes = ts->snes;
1359: return(0);
1360: }
1364: /*@
1365: TSGetKSP - Returns the KSP (linear solver) associated with
1366: a TS (timestepper) context.
1368: Not Collective, but KSP is parallel if TS is parallel
1370: Input Parameter:
1371: . ts - the TS context obtained from TSCreate()
1373: Output Parameter:
1374: . ksp - the nonlinear solver context
1376: Notes:
1377: The user can then directly manipulate the KSP context to set various
1378: options, etc. Likewise, the user can then extract and manipulate the
1379: KSP and PC contexts as well.
1381: TSGetKSP() does not work for integrators that do not use KSP;
1382: in this case TSGetKSP() returns PETSC_NULL in ksp.
1384: Level: beginner
1386: .keywords: timestep, get, KSP
1387: @*/
1388: PetscErrorCode TSGetKSP(TS ts,KSP *ksp)
1389: {
1391: SNES snes;
1396: if (!((PetscObject)ts)->type_name) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_NULL,"KSP is not created yet. Call TSSetType() first");
1397: if (ts->problem_type != TS_LINEAR) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Linear only; use TSGetSNES()");
1398: TSGetSNES(ts,&snes);
1399: SNESGetKSP(snes,ksp);
1400: return(0);
1401: }
1403: /* ----------- Routines to set solver parameters ---------- */
1407: /*@
1408: TSGetDuration - Gets the maximum number of timesteps to use and
1409: maximum time for iteration.
1411: Not Collective
1413: Input Parameters:
1414: + ts - the TS context obtained from TSCreate()
1415: . maxsteps - maximum number of iterations to use, or PETSC_NULL
1416: - maxtime - final time to iterate to, or PETSC_NULL
1418: Level: intermediate
1420: .keywords: TS, timestep, get, maximum, iterations, time
1421: @*/
1422: PetscErrorCode TSGetDuration(TS ts, PetscInt *maxsteps, PetscReal *maxtime)
1423: {
1426: if (maxsteps) {
1428: *maxsteps = ts->max_steps;
1429: }
1430: if (maxtime) {
1432: *maxtime = ts->max_time;
1433: }
1434: return(0);
1435: }
1439: /*@
1440: TSSetDuration - Sets the maximum number of timesteps to use and
1441: maximum time for iteration.
1443: Logically Collective on TS
1445: Input Parameters:
1446: + ts - the TS context obtained from TSCreate()
1447: . maxsteps - maximum number of iterations to use
1448: - maxtime - final time to iterate to
1450: Options Database Keys:
1451: . -ts_max_steps <maxsteps> - Sets maxsteps
1452: . -ts_final_time <maxtime> - Sets maxtime
1454: Notes:
1455: The default maximum number of iterations is 5000. Default time is 5.0
1457: Level: intermediate
1459: .keywords: TS, timestep, set, maximum, iterations
1461: .seealso: TSSetExactFinalTime()
1462: @*/
1463: PetscErrorCode TSSetDuration(TS ts,PetscInt maxsteps,PetscReal maxtime)
1464: {
1469: if (maxsteps >= 0) ts->max_steps = maxsteps;
1470: if (maxtime != PETSC_DEFAULT) ts->max_time = maxtime;
1471: return(0);
1472: }
1476: /*@
1477: TSSetSolution - Sets the initial solution vector
1478: for use by the TS routines.
1480: Logically Collective on TS and Vec
1482: Input Parameters:
1483: + ts - the TS context obtained from TSCreate()
1484: - x - the solution vector
1486: Level: beginner
1488: .keywords: TS, timestep, set, solution, initial conditions
1489: @*/
1490: PetscErrorCode TSSetSolution(TS ts,Vec x)
1491: {
1493: DM dm;
1498: PetscObjectReference((PetscObject)x);
1499: VecDestroy(&ts->vec_sol);
1500: ts->vec_sol = x;
1501: TSGetDM(ts,&dm);
1502: DMShellSetGlobalVector(dm,x);
1503: return(0);
1504: }
1508: /*@C
1509: TSSetPreStep - Sets the general-purpose function
1510: called once at the beginning of each time step.
1512: Logically Collective on TS
1514: Input Parameters:
1515: + ts - The TS context obtained from TSCreate()
1516: - func - The function
1518: Calling sequence of func:
1519: . func (TS ts);
1521: Level: intermediate
1523: .keywords: TS, timestep
1524: @*/
1525: PetscErrorCode TSSetPreStep(TS ts, PetscErrorCode (*func)(TS))
1526: {
1529: ts->ops->prestep = func;
1530: return(0);
1531: }
1535: /*@
1536: TSPreStep - Runs the user-defined pre-step function.
1538: Collective on TS
1540: Input Parameters:
1541: . ts - The TS context obtained from TSCreate()
1543: Notes:
1544: TSPreStep() is typically used within time stepping implementations,
1545: so most users would not generally call this routine themselves.
1547: Level: developer
1549: .keywords: TS, timestep
1550: @*/
1551: PetscErrorCode TSPreStep(TS ts)
1552: {
1557: if (ts->ops->prestep) {
1558: PetscStackPush("TS PreStep function");
1559: (*ts->ops->prestep)(ts);
1560: PetscStackPop;
1561: }
1562: return(0);
1563: }
1567: /*@C
1568: TSSetPostStep - Sets the general-purpose function
1569: called once at the end of each time step.
1571: Logically Collective on TS
1573: Input Parameters:
1574: + ts - The TS context obtained from TSCreate()
1575: - func - The function
1577: Calling sequence of func:
1578: . func (TS ts);
1580: Level: intermediate
1582: .keywords: TS, timestep
1583: @*/
1584: PetscErrorCode TSSetPostStep(TS ts, PetscErrorCode (*func)(TS))
1585: {
1588: ts->ops->poststep = func;
1589: return(0);
1590: }
1594: /*@
1595: TSPostStep - Runs the user-defined post-step function.
1597: Collective on TS
1599: Input Parameters:
1600: . ts - The TS context obtained from TSCreate()
1602: Notes:
1603: TSPostStep() is typically used within time stepping implementations,
1604: so most users would not generally call this routine themselves.
1606: Level: developer
1608: .keywords: TS, timestep
1609: @*/
1610: PetscErrorCode TSPostStep(TS ts)
1611: {
1616: if (ts->ops->poststep) {
1617: PetscStackPush("TS PostStep function");
1618: (*ts->ops->poststep)(ts);
1619: PetscStackPop;
1620: }
1621: return(0);
1622: }
1624: /* ------------ Routines to set performance monitoring options ----------- */
1628: /*@C
1629: TSMonitorSet - Sets an ADDITIONAL function that is to be used at every
1630: timestep to display the iteration's progress.
1632: Logically Collective on TS
1634: Input Parameters:
1635: + ts - the TS context obtained from TSCreate()
1636: . monitor - monitoring routine
1637: . mctx - [optional] user-defined context for private data for the
1638: monitor routine (use PETSC_NULL if no context is desired)
1639: - monitordestroy - [optional] routine that frees monitor context
1640: (may be PETSC_NULL)
1642: Calling sequence of monitor:
1643: $ int monitor(TS ts,PetscInt steps,PetscReal time,Vec x,void *mctx)
1645: + ts - the TS context
1646: . steps - iteration number
1647: . time - current time
1648: . x - current iterate
1649: - mctx - [optional] monitoring context
1651: Notes:
1652: This routine adds an additional monitor to the list of monitors that
1653: already has been loaded.
1655: Fortran notes: Only a single monitor function can be set for each TS object
1657: Level: intermediate
1659: .keywords: TS, timestep, set, monitor
1661: .seealso: TSMonitorDefault(), TSMonitorCancel()
1662: @*/
1663: PetscErrorCode TSMonitorSet(TS ts,PetscErrorCode (*monitor)(TS,PetscInt,PetscReal,Vec,void*),void *mctx,PetscErrorCode (*mdestroy)(void**))
1664: {
1667: if (ts->numbermonitors >= MAXTSMONITORS) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Too many monitors set");
1668: ts->monitor[ts->numbermonitors] = monitor;
1669: ts->mdestroy[ts->numbermonitors] = mdestroy;
1670: ts->monitorcontext[ts->numbermonitors++] = (void*)mctx;
1671: return(0);
1672: }
1676: /*@C
1677: TSMonitorCancel - Clears all the monitors that have been set on a time-step object.
1679: Logically Collective on TS
1681: Input Parameters:
1682: . ts - the TS context obtained from TSCreate()
1684: Notes:
1685: There is no way to remove a single, specific monitor.
1687: Level: intermediate
1689: .keywords: TS, timestep, set, monitor
1691: .seealso: TSMonitorDefault(), TSMonitorSet()
1692: @*/
1693: PetscErrorCode TSMonitorCancel(TS ts)
1694: {
1696: PetscInt i;
1700: for (i=0; i<ts->numbermonitors; i++) {
1701: if (ts->mdestroy[i]) {
1702: (*ts->mdestroy[i])(&ts->monitorcontext[i]);
1703: }
1704: }
1705: ts->numbermonitors = 0;
1706: return(0);
1707: }
1711: /*@
1712: TSMonitorDefault - Sets the Default monitor
1714: Level: intermediate
1716: .keywords: TS, set, monitor
1718: .seealso: TSMonitorDefault(), TSMonitorSet()
1719: @*/
1720: PetscErrorCode TSMonitorDefault(TS ts,PetscInt step,PetscReal ptime,Vec v,void *dummy)
1721: {
1723: PetscViewer viewer = dummy ? (PetscViewer) dummy : PETSC_VIEWER_STDOUT_(((PetscObject)ts)->comm);
1726: PetscViewerASCIIAddTab(viewer,((PetscObject)ts)->tablevel);
1727: PetscViewerASCIIPrintf(viewer,"%D TS dt %g time %g\n",step,(double)ts->time_step,(double)ptime);
1728: PetscViewerASCIISubtractTab(viewer,((PetscObject)ts)->tablevel);
1729: return(0);
1730: }
1734: /*@
1735: TSSetRetainStages - Request that all stages in the upcoming step be stored so that interpolation will be available.
1737: Logically Collective on TS
1739: Input Argument:
1740: . ts - time stepping context
1742: Output Argument:
1743: . flg - PETSC_TRUE or PETSC_FALSE
1745: Level: intermediate
1747: .keywords: TS, set
1749: .seealso: TSInterpolate(), TSSetPostStep()
1750: @*/
1751: PetscErrorCode TSSetRetainStages(TS ts,PetscBool flg)
1752: {
1756: ts->retain_stages = flg;
1757: return(0);
1758: }
1762: /*@
1763: TSInterpolate - Interpolate the solution computed during the previous step to an arbitrary location in the interval
1765: Collective on TS
1767: Input Argument:
1768: + ts - time stepping context
1769: - t - time to interpolate to
1771: Output Argument:
1772: . X - state at given time
1774: Notes:
1775: The user should call TSSetRetainStages() before taking a step in which interpolation will be requested.
1777: Level: intermediate
1779: Developer Notes:
1780: TSInterpolate() and the storing of previous steps/stages should be generalized to support delay differential equations and continuous adjoints.
1782: .keywords: TS, set
1784: .seealso: TSSetRetainStages(), TSSetPostStep()
1785: @*/
1786: PetscErrorCode TSInterpolate(TS ts,PetscReal t,Vec X)
1787: {
1792: if (t < ts->ptime - ts->time_step_prev || t > ts->ptime) SETERRQ3(((PetscObject)ts)->comm,PETSC_ERR_ARG_OUTOFRANGE,"Requested time %G not in last time steps [%G,%G]",t,ts->ptime-ts->time_step_prev,ts->ptime);
1793: if (!ts->ops->interpolate) SETERRQ1(((PetscObject)ts)->comm,PETSC_ERR_SUP,"%s does not provide interpolation",((PetscObject)ts)->type_name);
1794: (*ts->ops->interpolate)(ts,t,X);
1795: return(0);
1796: }
1800: /*@
1801: TSStep - Steps one time step
1803: Collective on TS
1805: Input Parameter:
1806: . ts - the TS context obtained from TSCreate()
1808: Level: intermediate
1810: .keywords: TS, timestep, solve
1812: .seealso: TSCreate(), TSSetUp(), TSDestroy(), TSSolve()
1813: @*/
1814: PetscErrorCode TSStep(TS ts)
1815: {
1816: PetscReal ptime_prev;
1821: TSSetUp(ts);
1823: ts->reason = TS_CONVERGED_ITERATING;
1825: ptime_prev = ts->ptime;
1826: PetscLogEventBegin(TS_Step,ts,0,0,0);
1827: (*ts->ops->step)(ts);
1828: PetscLogEventEnd(TS_Step,ts,0,0,0);
1829: ts->time_step_prev = ts->ptime - ptime_prev;
1831: if (ts->reason < 0) {
1832: if (ts->errorifstepfailed) {
1833: if (ts->reason == TS_DIVERGED_NONLINEAR_SOLVE) {
1834: SETERRQ1(((PetscObject)ts)->comm,PETSC_ERR_NOT_CONVERGED,"TSStep has failed due to %s, increase -ts_max_snes_failures or make negative to attempt recovery",TSConvergedReasons[ts->reason]);
1835: } else SETERRQ1(((PetscObject)ts)->comm,PETSC_ERR_NOT_CONVERGED,"TSStep has failed due to %s",TSConvergedReasons[ts->reason]);
1836: }
1837: } else if (!ts->reason) {
1838: if (ts->steps >= ts->max_steps)
1839: ts->reason = TS_CONVERGED_ITS;
1840: else if (ts->ptime >= ts->max_time)
1841: ts->reason = TS_CONVERGED_TIME;
1842: }
1844: return(0);
1845: }
1849: /*@
1850: TSEvaluateStep - Evaluate the solution at the end of a time step with a given order of accuracy.
1852: Collective on TS
1854: Input Arguments:
1855: + ts - time stepping context
1856: . order - desired order of accuracy
1857: - done - whether the step was evaluated at this order (pass PETSC_NULL to generate an error if not available)
1859: Output Arguments:
1860: . X - state at the end of the current step
1862: Level: advanced
1864: Notes:
1865: This function cannot be called until all stages have been evaluated.
1866: It is normally called by adaptive controllers before a step has been accepted and may also be called by the user after TSStep() has returned.
1868: .seealso: TSStep(), TSAdapt
1869: @*/
1870: PetscErrorCode TSEvaluateStep(TS ts,PetscInt order,Vec X,PetscBool *done)
1871: {
1878: if (!ts->ops->evaluatestep) SETERRQ1(((PetscObject)ts)->comm,PETSC_ERR_SUP,"TSEvaluateStep not implemented for type '%s'",((PetscObject)ts)->type_name);
1879: (*ts->ops->evaluatestep)(ts,order,X,done);
1880: return(0);
1881: }
1885: /*@
1886: TSSolve - Steps the requested number of timesteps.
1888: Collective on TS
1890: Input Parameter:
1891: + ts - the TS context obtained from TSCreate()
1892: - x - the solution vector
1894: Output Parameter:
1895: . ftime - time of the state vector x upon completion
1897: Level: beginner
1899: Notes:
1900: The final time returned by this function may be different from the time of the internally
1901: held state accessible by TSGetSolution() and TSGetTime() because the method may have
1902: stepped over the final time.
1904: .keywords: TS, timestep, solve
1906: .seealso: TSCreate(), TSSetSolution(), TSStep()
1907: @*/
1908: PetscErrorCode TSSolve(TS ts,Vec x,PetscReal *ftime)
1909: {
1910: PetscBool flg;
1911: char filename[PETSC_MAX_PATH_LEN];
1912: PetscViewer viewer;
1918: if (ts->exact_final_time) { /* Need ts->vec_sol to be distinct so it is not overwritten when we interpolate at the end */
1919: if (!ts->vec_sol || x == ts->vec_sol) {
1920: Vec y;
1921: VecDuplicate(x,&y);
1922: TSSetSolution(ts,y);
1923: VecDestroy(&y); /* grant ownership */
1924: }
1925: VecCopy(x,ts->vec_sol);
1926: } else {
1927: TSSetSolution(ts,x);
1928: }
1929: TSSetUp(ts);
1930: /* reset time step and iteration counters */
1931: ts->steps = 0;
1932: ts->ksp_its = 0;
1933: ts->snes_its = 0;
1934: ts->num_snes_failures = 0;
1935: ts->reject = 0;
1936: ts->reason = TS_CONVERGED_ITERATING;
1938: if (ts->ops->solve) { /* This private interface is transitional and should be removed when all implementations are updated. */
1939: (*ts->ops->solve)(ts);
1940: VecCopy(ts->vec_sol,x);
1941: if (ftime) *ftime = ts->ptime;
1942: } else {
1943: /* steps the requested number of timesteps. */
1944: TSMonitor(ts,ts->steps,ts->ptime,ts->vec_sol);
1945: if (ts->steps >= ts->max_steps)
1946: ts->reason = TS_CONVERGED_ITS;
1947: else if (ts->ptime >= ts->max_time)
1948: ts->reason = TS_CONVERGED_TIME;
1949: while (!ts->reason) {
1950: TSPreStep(ts);
1951: TSStep(ts);
1952: TSPostStep(ts);
1953: TSMonitor(ts,ts->steps,ts->ptime,ts->vec_sol);
1954: }
1955: if (ts->exact_final_time && ts->ptime > ts->max_time) {
1956: TSInterpolate(ts,ts->max_time,x);
1957: if (ftime) *ftime = ts->max_time;
1958: } else {
1959: VecCopy(ts->vec_sol,x);
1960: if (ftime) *ftime = ts->ptime;
1961: }
1962: }
1963: PetscOptionsGetString(((PetscObject)ts)->prefix,"-ts_view",filename,PETSC_MAX_PATH_LEN,&flg);
1964: if (flg && !PetscPreLoadingOn) {
1965: PetscViewerASCIIOpen(((PetscObject)ts)->comm,filename,&viewer);
1966: TSView(ts,viewer);
1967: PetscViewerDestroy(&viewer);
1968: }
1969: return(0);
1970: }
1974: /*@
1975: TSMonitor - Runs all user-provided monitor routines set using TSMonitorSet()
1977: Collective on TS
1979: Input Parameters:
1980: + ts - time stepping context obtained from TSCreate()
1981: . step - step number that has just completed
1982: . ptime - model time of the state
1983: - x - state at the current model time
1985: Notes:
1986: TSMonitor() is typically used within the time stepping implementations.
1987: Users might call this function when using the TSStep() interface instead of TSSolve().
1989: Level: advanced
1991: .keywords: TS, timestep
1992: @*/
1993: PetscErrorCode TSMonitor(TS ts,PetscInt step,PetscReal ptime,Vec x)
1994: {
1996: PetscInt i,n = ts->numbermonitors;
1999: for (i=0; i<n; i++) {
2000: (*ts->monitor[i])(ts,step,ptime,x,ts->monitorcontext[i]);
2001: }
2002: return(0);
2003: }
2005: /* ------------------------------------------------------------------------*/
2009: /*@C
2010: TSMonitorLGCreate - Creates a line graph context for use with
2011: TS to monitor convergence of preconditioned residual norms.
2013: Collective on TS
2015: Input Parameters:
2016: + host - the X display to open, or null for the local machine
2017: . label - the title to put in the title bar
2018: . x, y - the screen coordinates of the upper left coordinate of the window
2019: - m, n - the screen width and height in pixels
2021: Output Parameter:
2022: . draw - the drawing context
2024: Options Database Key:
2025: . -ts_monitor_draw - automatically sets line graph monitor
2027: Notes:
2028: Use TSMonitorLGDestroy() to destroy this line graph, not PetscDrawLGDestroy().
2030: Level: intermediate
2032: .keywords: TS, monitor, line graph, residual, seealso
2034: .seealso: TSMonitorLGDestroy(), TSMonitorSet()
2036: @*/
2037: PetscErrorCode TSMonitorLGCreate(const char host[],const char label[],int x,int y,int m,int n,PetscDrawLG *draw)
2038: {
2039: PetscDraw win;
2043: PetscDrawCreate(PETSC_COMM_SELF,host,label,x,y,m,n,&win);
2044: PetscDrawSetType(win,PETSC_DRAW_X);
2045: PetscDrawLGCreate(win,1,draw);
2046: PetscDrawLGIndicateDataPoints(*draw);
2048: PetscLogObjectParent(*draw,win);
2049: return(0);
2050: }
2054: PetscErrorCode TSMonitorLG(TS ts,PetscInt n,PetscReal ptime,Vec v,void *monctx)
2055: {
2056: PetscDrawLG lg = (PetscDrawLG) monctx;
2057: PetscReal x,y = ptime;
2061: if (!monctx) {
2062: MPI_Comm comm;
2063: PetscViewer viewer;
2065: PetscObjectGetComm((PetscObject)ts,&comm);
2066: viewer = PETSC_VIEWER_DRAW_(comm);
2067: PetscViewerDrawGetDrawLG(viewer,0,&lg);
2068: }
2070: if (!n) {PetscDrawLGReset(lg);}
2071: x = (PetscReal)n;
2072: PetscDrawLGAddPoint(lg,&x,&y);
2073: if (n < 20 || (n % 5)) {
2074: PetscDrawLGDraw(lg);
2075: }
2076: return(0);
2077: }
2081: /*@C
2082: TSMonitorLGDestroy - Destroys a line graph context that was created
2083: with TSMonitorLGCreate().
2085: Collective on PetscDrawLG
2087: Input Parameter:
2088: . draw - the drawing context
2090: Level: intermediate
2092: .keywords: TS, monitor, line graph, destroy
2094: .seealso: TSMonitorLGCreate(), TSMonitorSet(), TSMonitorLG();
2095: @*/
2096: PetscErrorCode TSMonitorLGDestroy(PetscDrawLG *drawlg)
2097: {
2098: PetscDraw draw;
2102: PetscDrawLGGetDraw(*drawlg,&draw);
2103: PetscDrawDestroy(&draw);
2104: PetscDrawLGDestroy(drawlg);
2105: return(0);
2106: }
2110: /*@
2111: TSGetTime - Gets the current time.
2113: Not Collective
2115: Input Parameter:
2116: . ts - the TS context obtained from TSCreate()
2118: Output Parameter:
2119: . t - the current time
2121: Level: beginner
2123: .seealso: TSSetInitialTimeStep(), TSGetTimeStep()
2125: .keywords: TS, get, time
2126: @*/
2127: PetscErrorCode TSGetTime(TS ts,PetscReal* t)
2128: {
2132: *t = ts->ptime;
2133: return(0);
2134: }
2138: /*@
2139: TSSetTime - Allows one to reset the time.
2141: Logically Collective on TS
2143: Input Parameters:
2144: + ts - the TS context obtained from TSCreate()
2145: - time - the time
2147: Level: intermediate
2149: .seealso: TSGetTime(), TSSetDuration()
2151: .keywords: TS, set, time
2152: @*/
2153: PetscErrorCode TSSetTime(TS ts, PetscReal t)
2154: {
2158: ts->ptime = t;
2159: return(0);
2160: }
2164: /*@C
2165: TSSetOptionsPrefix - Sets the prefix used for searching for all
2166: TS options in the database.
2168: Logically Collective on TS
2170: Input Parameter:
2171: + ts - The TS context
2172: - prefix - The prefix to prepend to all option names
2174: Notes:
2175: A hyphen (-) must NOT be given at the beginning of the prefix name.
2176: The first character of all runtime options is AUTOMATICALLY the
2177: hyphen.
2179: Level: advanced
2181: .keywords: TS, set, options, prefix, database
2183: .seealso: TSSetFromOptions()
2185: @*/
2186: PetscErrorCode TSSetOptionsPrefix(TS ts,const char prefix[])
2187: {
2189: SNES snes;
2193: PetscObjectSetOptionsPrefix((PetscObject)ts,prefix);
2194: TSGetSNES(ts,&snes);
2195: SNESSetOptionsPrefix(snes,prefix);
2196: return(0);
2197: }
2202: /*@C
2203: TSAppendOptionsPrefix - Appends to the prefix used for searching for all
2204: TS options in the database.
2206: Logically Collective on TS
2208: Input Parameter:
2209: + ts - The TS context
2210: - prefix - The prefix to prepend to all option names
2212: Notes:
2213: A hyphen (-) must NOT be given at the beginning of the prefix name.
2214: The first character of all runtime options is AUTOMATICALLY the
2215: hyphen.
2217: Level: advanced
2219: .keywords: TS, append, options, prefix, database
2221: .seealso: TSGetOptionsPrefix()
2223: @*/
2224: PetscErrorCode TSAppendOptionsPrefix(TS ts,const char prefix[])
2225: {
2227: SNES snes;
2231: PetscObjectAppendOptionsPrefix((PetscObject)ts,prefix);
2232: TSGetSNES(ts,&snes);
2233: SNESAppendOptionsPrefix(snes,prefix);
2234: return(0);
2235: }
2239: /*@C
2240: TSGetOptionsPrefix - Sets the prefix used for searching for all
2241: TS options in the database.
2243: Not Collective
2245: Input Parameter:
2246: . ts - The TS context
2248: Output Parameter:
2249: . prefix - A pointer to the prefix string used
2251: Notes: On the fortran side, the user should pass in a string 'prifix' of
2252: sufficient length to hold the prefix.
2254: Level: intermediate
2256: .keywords: TS, get, options, prefix, database
2258: .seealso: TSAppendOptionsPrefix()
2259: @*/
2260: PetscErrorCode TSGetOptionsPrefix(TS ts,const char *prefix[])
2261: {
2267: PetscObjectGetOptionsPrefix((PetscObject)ts,prefix);
2268: return(0);
2269: }
2273: /*@C
2274: TSGetRHSJacobian - Returns the Jacobian J at the present timestep.
2276: Not Collective, but parallel objects are returned if TS is parallel
2278: Input Parameter:
2279: . ts - The TS context obtained from TSCreate()
2281: Output Parameters:
2282: + J - The Jacobian J of F, where U_t = F(U,t)
2283: . M - The preconditioner matrix, usually the same as J
2284: . func - Function to compute the Jacobian of the RHS
2285: - ctx - User-defined context for Jacobian evaluation routine
2287: Notes: You can pass in PETSC_NULL for any return argument you do not need.
2289: Level: intermediate
2291: .seealso: TSGetTimeStep(), TSGetMatrices(), TSGetTime(), TSGetTimeStepNumber()
2293: .keywords: TS, timestep, get, matrix, Jacobian
2294: @*/
2295: PetscErrorCode TSGetRHSJacobian(TS ts,Mat *J,Mat *M,TSRHSJacobian *func,void **ctx)
2296: {
2298: SNES snes;
2301: TSGetSNES(ts,&snes);
2302: SNESGetJacobian(snes,J,M,PETSC_NULL,PETSC_NULL);
2303: if (func) *func = ts->userops->rhsjacobian;
2304: if (ctx) *ctx = ts->jacP;
2305: return(0);
2306: }
2310: /*@C
2311: TSGetIJacobian - Returns the implicit Jacobian at the present timestep.
2313: Not Collective, but parallel objects are returned if TS is parallel
2315: Input Parameter:
2316: . ts - The TS context obtained from TSCreate()
2318: Output Parameters:
2319: + A - The Jacobian of F(t,U,U_t)
2320: . B - The preconditioner matrix, often the same as A
2321: . f - The function to compute the matrices
2322: - ctx - User-defined context for Jacobian evaluation routine
2324: Notes: You can pass in PETSC_NULL for any return argument you do not need.
2326: Level: advanced
2328: .seealso: TSGetTimeStep(), TSGetRHSJacobian(), TSGetMatrices(), TSGetTime(), TSGetTimeStepNumber()
2330: .keywords: TS, timestep, get, matrix, Jacobian
2331: @*/
2332: PetscErrorCode TSGetIJacobian(TS ts,Mat *A,Mat *B,TSIJacobian *f,void **ctx)
2333: {
2335: SNES snes;
2338: TSGetSNES(ts,&snes);
2339: SNESGetJacobian(snes,A,B,PETSC_NULL,PETSC_NULL);
2340: if (f) *f = ts->userops->ijacobian;
2341: if (ctx) *ctx = ts->jacP;
2342: return(0);
2343: }
2345: typedef struct {
2346: PetscViewer viewer;
2347: Vec initialsolution;
2348: PetscBool showinitial;
2349: } TSMonitorSolutionCtx;
2353: /*@C
2354: TSMonitorSolution - Monitors progress of the TS solvers by calling
2355: VecView() for the solution at each timestep
2357: Collective on TS
2359: Input Parameters:
2360: + ts - the TS context
2361: . step - current time-step
2362: . ptime - current time
2363: - dummy - either a viewer or PETSC_NULL
2365: Level: intermediate
2367: .keywords: TS, vector, monitor, view
2369: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
2370: @*/
2371: PetscErrorCode TSMonitorSolution(TS ts,PetscInt step,PetscReal ptime,Vec x,void *dummy)
2372: {
2373: PetscErrorCode ierr;
2374: TSMonitorSolutionCtx *ictx = (TSMonitorSolutionCtx*)dummy;
2377: if (!step && ictx->showinitial) {
2378: if (!ictx->initialsolution) {
2379: VecDuplicate(x,&ictx->initialsolution);
2380: }
2381: VecCopy(x,ictx->initialsolution);
2382: }
2383: if (ictx->showinitial) {
2384: PetscReal pause;
2385: PetscViewerDrawGetPause(ictx->viewer,&pause);
2386: PetscViewerDrawSetPause(ictx->viewer,0.0);
2387: VecView(ictx->initialsolution,ictx->viewer);
2388: PetscViewerDrawSetPause(ictx->viewer,pause);
2389: PetscViewerDrawSetHold(ictx->viewer,PETSC_TRUE);
2390: }
2391: VecView(x,ictx->viewer);
2392: if (ictx->showinitial) {
2393: PetscViewerDrawSetHold(ictx->viewer,PETSC_FALSE);
2394: }
2395: return(0);
2396: }
2401: /*@C
2402: TSMonitorSolutionDestroy - Destroys the monitor context for TSMonitorSolution
2404: Collective on TS
2406: Input Parameters:
2407: . ctx - the monitor context
2409: Level: intermediate
2411: .keywords: TS, vector, monitor, view
2413: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorSolution()
2414: @*/
2415: PetscErrorCode TSMonitorSolutionDestroy(void **ctx)
2416: {
2417: PetscErrorCode ierr;
2418: TSMonitorSolutionCtx *ictx = *(TSMonitorSolutionCtx**)ctx;
2419:
2421: PetscViewerDestroy(&ictx->viewer);
2422: VecDestroy(&ictx->initialsolution);
2423: PetscFree(ictx);
2424: return(0);
2425: }
2429: /*@C
2430: TSMonitorSolutionCreate - Creates the monitor context for TSMonitorSolution
2432: Collective on TS
2434: Input Parameter:
2435: . ts - time-step context
2437: Output Patameter:
2438: . ctx - the monitor context
2440: Level: intermediate
2442: .keywords: TS, vector, monitor, view
2444: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorSolution()
2445: @*/
2446: PetscErrorCode TSMonitorSolutionCreate(TS ts,PetscViewer viewer,void **ctx)
2447: {
2448: PetscErrorCode ierr;
2449: TSMonitorSolutionCtx *ictx;
2450:
2452: PetscNew(TSMonitorSolutionCtx,&ictx);
2453: *ctx = (void*)ictx;
2454: if (!viewer) {
2455: viewer = PETSC_VIEWER_DRAW_(((PetscObject)ts)->comm);
2456: }
2457: PetscObjectReference((PetscObject)viewer);
2458: ictx->viewer = viewer;
2459: ictx->showinitial = PETSC_FALSE;
2460: PetscOptionsGetBool(((PetscObject)ts)->prefix,"-ts_monitor_solution_initial",&ictx->showinitial,PETSC_NULL);
2461: return(0);
2462: }
2466: /*@
2467: TSSetDM - Sets the DM that may be used by some preconditioners
2469: Logically Collective on TS and DM
2471: Input Parameters:
2472: + ts - the preconditioner context
2473: - dm - the dm
2475: Level: intermediate
2478: .seealso: TSGetDM(), SNESSetDM(), SNESGetDM()
2479: @*/
2480: PetscErrorCode TSSetDM(TS ts,DM dm)
2481: {
2483: SNES snes;
2487: PetscObjectReference((PetscObject)dm);
2488: DMDestroy(&ts->dm);
2489: ts->dm = dm;
2490: TSGetSNES(ts,&snes);
2491: SNESSetDM(snes,dm);
2492: return(0);
2493: }
2497: /*@
2498: TSGetDM - Gets the DM that may be used by some preconditioners
2500: Not Collective
2502: Input Parameter:
2503: . ts - the preconditioner context
2505: Output Parameter:
2506: . dm - the dm
2508: Level: intermediate
2511: .seealso: TSSetDM(), SNESSetDM(), SNESGetDM()
2512: @*/
2513: PetscErrorCode TSGetDM(TS ts,DM *dm)
2514: {
2519: if (!ts->dm) {
2520: DMShellCreate(((PetscObject)ts)->comm,&ts->dm);
2521: if (ts->snes) {SNESSetDM(ts->snes,ts->dm);}
2522: }
2523: *dm = ts->dm;
2524: return(0);
2525: }
2529: /*@
2530: SNESTSFormFunction - Function to evaluate nonlinear residual
2532: Logically Collective on SNES
2534: Input Parameter:
2535: + snes - nonlinear solver
2536: . X - the current state at which to evaluate the residual
2537: - ctx - user context, must be a TS
2539: Output Parameter:
2540: . F - the nonlinear residual
2542: Notes:
2543: This function is not normally called by users and is automatically registered with the SNES used by TS.
2544: It is most frequently passed to MatFDColoringSetFunction().
2546: Level: advanced
2548: .seealso: SNESSetFunction(), MatFDColoringSetFunction()
2549: @*/
2550: PetscErrorCode SNESTSFormFunction(SNES snes,Vec X,Vec F,void *ctx)
2551: {
2552: TS ts = (TS)ctx;
2560: (ts->ops->snesfunction)(snes,X,F,ts);
2561: return(0);
2562: }
2566: /*@
2567: SNESTSFormJacobian - Function to evaluate the Jacobian
2569: Collective on SNES
2571: Input Parameter:
2572: + snes - nonlinear solver
2573: . X - the current state at which to evaluate the residual
2574: - ctx - user context, must be a TS
2576: Output Parameter:
2577: + A - the Jacobian
2578: . B - the preconditioning matrix (may be the same as A)
2579: - flag - indicates any structure change in the matrix
2581: Notes:
2582: This function is not normally called by users and is automatically registered with the SNES used by TS.
2584: Level: developer
2586: .seealso: SNESSetJacobian()
2587: @*/
2588: PetscErrorCode SNESTSFormJacobian(SNES snes,Vec X,Mat *A,Mat *B,MatStructure *flag,void *ctx)
2589: {
2590: TS ts = (TS)ctx;
2602: (ts->ops->snesjacobian)(snes,X,A,B,flag,ts);
2603: return(0);
2604: }
2608: /*@C
2609: TSComputeRHSFunctionLinear - Evaluate the right hand side via the user-provided Jacobian, for linear problems only
2611: Collective on TS
2613: Input Arguments:
2614: + ts - time stepping context
2615: . t - time at which to evaluate
2616: . X - state at which to evaluate
2617: - ctx - context
2619: Output Arguments:
2620: . F - right hand side
2622: Level: intermediate
2624: Notes:
2625: This function is intended to be passed to TSSetRHSFunction() to evaluate the right hand side for linear problems.
2626: The matrix (and optionally the evaluation context) should be passed to TSSetRHSJacobian().
2628: .seealso: TSSetRHSFunction(), TSSetRHSJacobian(), TSComputeRHSJacobianConstant()
2629: @*/
2630: PetscErrorCode TSComputeRHSFunctionLinear(TS ts,PetscReal t,Vec X,Vec F,void *ctx)
2631: {
2633: Mat Arhs,Brhs;
2634: MatStructure flg2;
2637: TSGetRHSMats_Private(ts,&Arhs,&Brhs);
2638: TSComputeRHSJacobian(ts,t,X,&Arhs,&Brhs,&flg2);
2639: MatMult(Arhs,X,F);
2640: return(0);
2641: }
2645: /*@C
2646: TSComputeRHSJacobianConstant - Reuses a Jacobian that is time-independent.
2648: Collective on TS
2650: Input Arguments:
2651: + ts - time stepping context
2652: . t - time at which to evaluate
2653: . X - state at which to evaluate
2654: - ctx - context
2656: Output Arguments:
2657: + A - pointer to operator
2658: . B - pointer to preconditioning matrix
2659: - flg - matrix structure flag
2661: Level: intermediate
2663: Notes:
2664: This function is intended to be passed to TSSetRHSJacobian() to evaluate the Jacobian for linear time-independent problems.
2666: .seealso: TSSetRHSFunction(), TSSetRHSJacobian(), TSComputeRHSFunctionLinear()
2667: @*/
2668: PetscErrorCode TSComputeRHSJacobianConstant(TS ts,PetscReal t,Vec X,Mat *A,Mat *B,MatStructure *flg,void *ctx)
2669: {
2672: *flg = SAME_PRECONDITIONER;
2673: return(0);
2674: }
2678: /*@C
2679: TSComputeIFunctionLinear - Evaluate the left hand side via the user-provided Jacobian, for linear problems only
2681: Collective on TS
2683: Input Arguments:
2684: + ts - time stepping context
2685: . t - time at which to evaluate
2686: . X - state at which to evaluate
2687: . Xdot - time derivative of state vector
2688: - ctx - context
2690: Output Arguments:
2691: . F - left hand side
2693: Level: intermediate
2695: Notes:
2696: The assumption here is that the left hand side is of the form A*Xdot (and not A*Xdot + B*X). For other cases, the
2697: user is required to write their own TSComputeIFunction.
2698: This function is intended to be passed to TSSetIFunction() to evaluate the left hand side for linear problems.
2699: The matrix (and optionally the evaluation context) should be passed to TSSetIJacobian().
2701: .seealso: TSSetIFunction(), TSSetIJacobian(), TSComputeIJacobianConstant()
2702: @*/
2703: PetscErrorCode TSComputeIFunctionLinear(TS ts,PetscReal t,Vec X,Vec Xdot,Vec F,void *ctx)
2704: {
2706: Mat A,B;
2707: MatStructure flg2;
2710: TSGetIJacobian(ts,&A,&B,PETSC_NULL,PETSC_NULL);
2711: TSComputeIJacobian(ts,t,X,Xdot,1.0,&A,&B,&flg2,PETSC_TRUE);
2712: MatMult(A,Xdot,F);
2713: return(0);
2714: }
2718: /*@C
2719: TSComputeIJacobianConstant - Reuses a Jacobian that is time-independent.
2721: Collective on TS
2723: Input Arguments:
2724: + ts - time stepping context
2725: . t - time at which to evaluate
2726: . X - state at which to evaluate
2727: . Xdot - time derivative of state vector
2728: . shift - shift to apply
2729: - ctx - context
2731: Output Arguments:
2732: + A - pointer to operator
2733: . B - pointer to preconditioning matrix
2734: - flg - matrix structure flag
2736: Level: intermediate
2738: Notes:
2739: This function is intended to be passed to TSSetIJacobian() to evaluate the Jacobian for linear time-independent problems.
2741: .seealso: TSSetIFunction(), TSSetIJacobian(), TSComputeIFunctionLinear()
2742: @*/
2743: PetscErrorCode TSComputeIJacobianConstant(TS ts,PetscReal t,Vec X,Vec Xdot,PetscReal shift,Mat *A,Mat *B,MatStructure *flg,void *ctx)
2744: {
2747: *flg = SAME_PRECONDITIONER;
2748: return(0);
2749: }
2754: /*@
2755: TSGetConvergedReason - Gets the reason the TS iteration was stopped.
2757: Not Collective
2759: Input Parameter:
2760: . ts - the TS context
2762: Output Parameter:
2763: . reason - negative value indicates diverged, positive value converged, see TSConvergedReason or the
2764: manual pages for the individual convergence tests for complete lists
2766: Level: intermediate
2768: Notes:
2769: Can only be called after the call to TSSolve() is complete.
2771: .keywords: TS, nonlinear, set, convergence, test
2773: .seealso: TSSetConvergenceTest(), TSConvergedReason
2774: @*/
2775: PetscErrorCode TSGetConvergedReason(TS ts,TSConvergedReason *reason)
2776: {
2780: *reason = ts->reason;
2781: return(0);
2782: }
2786: /*@
2787: TSGetSNESIterations - Gets the total number of nonlinear iterations
2788: used by the time integrator.
2790: Not Collective
2792: Input Parameter:
2793: . ts - TS context
2795: Output Parameter:
2796: . nits - number of nonlinear iterations
2798: Notes:
2799: This counter is reset to zero for each successive call to TSSolve().
2801: Level: intermediate
2803: .keywords: TS, get, number, nonlinear, iterations
2805: .seealso: TSGetKSPIterations()
2806: @*/
2807: PetscErrorCode TSGetSNESIterations(TS ts,PetscInt *nits)
2808: {
2812: *nits = ts->snes_its;
2813: return(0);
2814: }
2818: /*@
2819: TSGetKSPIterations - Gets the total number of linear iterations
2820: used by the time integrator.
2822: Not Collective
2824: Input Parameter:
2825: . ts - TS context
2827: Output Parameter:
2828: . lits - number of linear iterations
2830: Notes:
2831: This counter is reset to zero for each successive call to TSSolve().
2833: Level: intermediate
2835: .keywords: TS, get, number, linear, iterations
2837: .seealso: TSGetSNESIterations(), SNESGetKSPIterations()
2838: @*/
2839: PetscErrorCode TSGetKSPIterations(TS ts,PetscInt *lits)
2840: {
2844: *lits = ts->ksp_its;
2845: return(0);
2846: }
2850: /*@
2851: TSGetStepRejections - Gets the total number of rejected steps.
2853: Not Collective
2855: Input Parameter:
2856: . ts - TS context
2858: Output Parameter:
2859: . rejects - number of steps rejected
2861: Notes:
2862: This counter is reset to zero for each successive call to TSSolve().
2864: Level: intermediate
2866: .keywords: TS, get, number
2868: .seealso: TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetSNESFailures(), TSSetMaxSNESFailures(), TSSetErrorIfStepFails()
2869: @*/
2870: PetscErrorCode TSGetStepRejections(TS ts,PetscInt *rejects)
2871: {
2875: *rejects = ts->reject;
2876: return(0);
2877: }
2881: /*@
2882: TSGetSNESFailures - Gets the total number of failed SNES solves
2884: Not Collective
2886: Input Parameter:
2887: . ts - TS context
2889: Output Parameter:
2890: . fails - number of failed nonlinear solves
2892: Notes:
2893: This counter is reset to zero for each successive call to TSSolve().
2895: Level: intermediate
2897: .keywords: TS, get, number
2899: .seealso: TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetStepRejections(), TSSetMaxSNESFailures()
2900: @*/
2901: PetscErrorCode TSGetSNESFailures(TS ts,PetscInt *fails)
2902: {
2906: *fails = ts->num_snes_failures;
2907: return(0);
2908: }
2912: /*@
2913: TSSetMaxStepRejections - Sets the maximum number of step rejections before a step fails
2915: Not Collective
2917: Input Parameter:
2918: + ts - TS context
2919: - rejects - maximum number of rejected steps, pass -1 for unlimited
2921: Notes:
2922: The counter is reset to zero for each step
2924: Options Database Key:
2925: . -ts_max_reject - Maximum number of step rejections before a step fails
2927: Level: intermediate
2929: .keywords: TS, set, maximum, number
2931: .seealso: TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxSNESFailures(), TSGetStepRejections(), TSGetSNESFailures(), TSSetErrorIfStepFails(), TSGetConvergedReason()
2932: @*/
2933: PetscErrorCode TSSetMaxStepRejections(TS ts,PetscInt rejects)
2934: {
2937: ts->max_reject = rejects;
2938: return(0);
2939: }
2943: /*@
2944: TSSetMaxSNESFailures - Sets the maximum number of failed SNES solves
2946: Not Collective
2948: Input Parameter:
2949: + ts - TS context
2950: - fails - maximum number of failed nonlinear solves, pass -1 for unlimited
2952: Notes:
2953: The counter is reset to zero for each successive call to TSSolve().
2955: Options Database Key:
2956: . -ts_max_snes_failures - Maximum number of nonlinear solve failures
2958: Level: intermediate
2960: .keywords: TS, set, maximum, number
2962: .seealso: TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetStepRejections(), TSGetSNESFailures(), SNESGetConvergedReason(), TSGetConvergedReason()
2963: @*/
2964: PetscErrorCode TSSetMaxSNESFailures(TS ts,PetscInt fails)
2965: {
2968: ts->max_snes_failures = fails;
2969: return(0);
2970: }
2974: /*@
2975: TSSetErrorIfStepFails - Error if no step succeeds
2977: Not Collective
2979: Input Parameter:
2980: + ts - TS context
2981: - err - PETSC_TRUE to error if no step succeeds, PETSC_FALSE to return without failure
2983: Options Database Key:
2984: . -ts_error_if_step_fails - Error if no step succeeds
2986: Level: intermediate
2988: .keywords: TS, set, error
2990: .seealso: TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetStepRejections(), TSGetSNESFailures(), TSSetErrorIfStepFails(), TSGetConvergedReason()
2991: @*/
2992: PetscErrorCode TSSetErrorIfStepFails(TS ts,PetscBool err)
2993: {
2996: ts->errorifstepfailed = err;
2997: return(0);
2998: }
3002: /*@C
3003: TSMonitorSolutionBinary - Monitors progress of the TS solvers by VecView() for the solution at each timestep. Normally the viewer is a binary file
3005: Collective on TS
3007: Input Parameters:
3008: + ts - the TS context
3009: . step - current time-step
3010: . ptime - current time
3011: . x - current state
3012: - viewer - binary viewer
3014: Level: intermediate
3016: .keywords: TS, vector, monitor, view
3018: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
3019: @*/
3020: PetscErrorCode TSMonitorSolutionBinary(TS ts,PetscInt step,PetscReal ptime,Vec x,void *viewer)
3021: {
3022: PetscErrorCode ierr;
3023: PetscViewer v = (PetscViewer)viewer;
3026: VecView(x,v);
3027: return(0);
3028: }
3032: /*@C
3033: TSMonitorSolutionVTK - Monitors progress of the TS solvers by VecView() for the solution at each timestep.
3035: Collective on TS
3037: Input Parameters:
3038: + ts - the TS context
3039: . step - current time-step
3040: . ptime - current time
3041: . x - current state
3042: - filenametemplate - string containing a format specifier for the integer time step (e.g. %03D)
3044: Level: intermediate
3046: Notes:
3047: The VTK format does not allow writing multiple time steps in the same file, therefore a different file will be written for each time step.
3048: These are named according to the file name template.
3050: This function is normally passed as an argument to TSMonitorSet() along with TSMonitorSolutionVTKDestroy().
3052: .keywords: TS, vector, monitor, view
3054: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
3055: @*/
3056: PetscErrorCode TSMonitorSolutionVTK(TS ts,PetscInt step,PetscReal ptime,Vec x,void *filenametemplate)
3057: {
3059: char filename[PETSC_MAX_PATH_LEN];
3060: PetscViewer viewer;
3063: PetscSNPrintf(filename,sizeof filename,(const char*)filenametemplate,step);
3064: PetscViewerVTKOpen(((PetscObject)ts)->comm,filename,FILE_MODE_WRITE,&viewer);
3065: VecView(x,viewer);
3066: PetscViewerDestroy(&viewer);
3067: return(0);
3068: }
3072: /*@C
3073: TSMonitorSolutionVTKDestroy - Destroy context for monitoring
3075: Collective on TS
3077: Input Parameters:
3078: . filenametemplate - string containing a format specifier for the integer time step (e.g. %03D)
3080: Level: intermediate
3082: Note:
3083: This function is normally passed to TSMonitorSet() along with TSMonitorSolutionVTK().
3085: .keywords: TS, vector, monitor, view
3087: .seealso: TSMonitorSet(), TSMonitorSolutionVTK()
3088: @*/
3089: PetscErrorCode TSMonitorSolutionVTKDestroy(void *filenametemplate)
3090: {
3094: PetscFree(*(char**)filenametemplate);
3095: return(0);
3096: }
3100: /*@
3101: TSGetAdapt - Get the adaptive controller context for the current method
3103: Collective on TS if controller has not been created yet
3105: Input Arguments:
3106: . ts - time stepping context
3108: Output Arguments:
3109: . adapt - adaptive controller
3111: Level: intermediate
3113: .seealso: TSAdapt, TSAdaptSetType(), TSAdaptChoose()
3114: @*/
3115: PetscErrorCode TSGetAdapt(TS ts,TSAdapt *adapt)
3116: {
3122: if (!ts->adapt) {
3123: TSAdaptCreate(((PetscObject)ts)->comm,&ts->adapt);
3124: PetscLogObjectParent(ts,ts->adapt);
3125: PetscObjectIncrementTabLevel((PetscObject)ts->adapt,(PetscObject)ts,1);
3126: }
3127: *adapt = ts->adapt;
3128: return(0);
3129: }
3133: /*@
3134: TSSetTolerances - Set tolerances for local truncation error when using adaptive controller
3136: Logically Collective
3138: Input Arguments:
3139: + ts - time integration context
3140: . atol - scalar absolute tolerances, PETSC_DECIDE to leave current value
3141: . vatol - vector of absolute tolerances or PETSC_NULL, used in preference to atol if present
3142: . rtol - scalar relative tolerances, PETSC_DECIDE to leave current value
3143: - vrtol - vector of relative tolerances or PETSC_NULL, used in preference to atol if present
3145: Level: beginner
3147: .seealso: TS, TSAdapt, TSVecNormWRMS(), TSGetTolerances()
3148: @*/
3149: PetscErrorCode TSSetTolerances(TS ts,PetscReal atol,Vec vatol,PetscReal rtol,Vec vrtol)
3150: {
3154: if (atol != PETSC_DECIDE && atol != PETSC_DEFAULT) ts->atol = atol;
3155: if (vatol) {
3156: PetscObjectReference((PetscObject)vatol);
3157: VecDestroy(&ts->vatol);
3158: ts->vatol = vatol;
3159: }
3160: if (rtol != PETSC_DECIDE && rtol != PETSC_DEFAULT) ts->rtol = rtol;
3161: if (vrtol) {
3162: PetscObjectReference((PetscObject)vrtol);
3163: VecDestroy(&ts->vrtol);
3164: ts->vrtol = vrtol;
3165: }
3166: return(0);
3167: }
3171: /*@
3172: TSGetTolerances - Get tolerances for local truncation error when using adaptive controller
3174: Logically Collective
3176: Input Arguments:
3177: . ts - time integration context
3179: Output Arguments:
3180: + atol - scalar absolute tolerances, PETSC_NULL to ignore
3181: . vatol - vector of absolute tolerances, PETSC_NULL to ignore
3182: . rtol - scalar relative tolerances, PETSC_NULL to ignore
3183: - vrtol - vector of relative tolerances, PETSC_NULL to ignore
3185: Level: beginner
3187: .seealso: TS, TSAdapt, TSVecNormWRMS(), TSSetTolerances()
3188: @*/
3189: PetscErrorCode TSGetTolerances(TS ts,PetscReal *atol,Vec *vatol,PetscReal *rtol,Vec *vrtol)
3190: {
3193: if (atol) *atol = ts->atol;
3194: if (vatol) *vatol = ts->vatol;
3195: if (rtol) *rtol = ts->rtol;
3196: if (vrtol) *vrtol = ts->vrtol;
3197: return(0);
3198: }
3202: /*@
3203: TSErrorNormWRMS - compute a weighted norm of the difference between a vector and the current state
3205: Collective on TS
3207: Input Arguments:
3208: + ts - time stepping context
3209: - Y - state vector to be compared to ts->vec_sol
3211: Output Arguments:
3212: . norm - weighted norm, a value of 1.0 is considered small
3214: Level: developer
3216: .seealso: TSSetTolerances()
3217: @*/
3218: PetscErrorCode TSErrorNormWRMS(TS ts,Vec Y,PetscReal *norm)
3219: {
3221: PetscInt i,n,N;
3222: const PetscScalar *x,*y;
3223: Vec X;
3224: PetscReal sum,gsum;
3230: X = ts->vec_sol;
3232: if (X == Y) SETERRQ(((PetscObject)X)->comm,PETSC_ERR_ARG_IDN,"Y cannot be the TS solution vector");
3234: VecGetSize(X,&N);
3235: VecGetLocalSize(X,&n);
3236: VecGetArrayRead(X,&x);
3237: VecGetArrayRead(Y,&y);
3238: sum = 0.;
3239: if (ts->vatol && ts->vrtol) {
3240: const PetscScalar *atol,*rtol;
3241: VecGetArrayRead(ts->vatol,&atol);
3242: VecGetArrayRead(ts->vrtol,&rtol);
3243: for (i=0; i<n; i++) {
3244: PetscReal tol = PetscRealPart(atol[i]) + PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(x[i]),PetscAbsScalar(y[i]));
3245: sum += PetscSqr(PetscAbsScalar(y[i] - x[i]) / tol);
3246: }
3247: VecRestoreArrayRead(ts->vatol,&atol);
3248: VecRestoreArrayRead(ts->vrtol,&rtol);
3249: } else if (ts->vatol) { /* vector atol, scalar rtol */
3250: const PetscScalar *atol;
3251: VecGetArrayRead(ts->vatol,&atol);
3252: for (i=0; i<n; i++) {
3253: PetscReal tol = PetscRealPart(atol[i]) + ts->rtol * PetscMax(PetscAbsScalar(x[i]),PetscAbsScalar(y[i]));
3254: sum += PetscSqr(PetscAbsScalar(y[i] - x[i]) / tol);
3255: }
3256: VecRestoreArrayRead(ts->vatol,&atol);
3257: } else if (ts->vrtol) { /* scalar atol, vector rtol */
3258: const PetscScalar *rtol;
3259: VecGetArrayRead(ts->vrtol,&rtol);
3260: for (i=0; i<n; i++) {
3261: PetscReal tol = ts->atol + PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(x[i]),PetscAbsScalar(y[i]));
3262: sum += PetscSqr(PetscAbsScalar(y[i] - x[i]) / tol);
3263: }
3264: VecRestoreArrayRead(ts->vrtol,&rtol);
3265: } else { /* scalar atol, scalar rtol */
3266: for (i=0; i<n; i++) {
3267: PetscReal tol = ts->atol + ts->rtol * PetscMax(PetscAbsScalar(x[i]),PetscAbsScalar(y[i]));
3268: sum += PetscSqr(PetscAbsScalar(y[i] - x[i]) / tol);
3269: }
3270: }
3271: VecRestoreArrayRead(X,&x);
3272: VecRestoreArrayRead(Y,&y);
3274: MPI_Allreduce(&sum,&gsum,1,MPIU_REAL,MPIU_SUM,((PetscObject)ts)->comm);
3275: *norm = PetscSqrtReal(gsum / N);
3276: if (PetscIsInfOrNanScalar(*norm)) SETERRQ(((PetscObject)ts)->comm,PETSC_ERR_FP,"Infinite or not-a-number generated in norm");
3277: return(0);
3278: }
3282: /*@
3283: TSSetCFLTimeLocal - Set the local CFL constraint relative to forward Euler
3285: Logically Collective on TS
3287: Input Arguments:
3288: + ts - time stepping context
3289: - cfltime - maximum stable time step if using forward Euler (value can be different on each process)
3291: Note:
3292: After calling this function, the global CFL time can be obtained by calling TSGetCFLTime()
3294: Level: intermediate
3296: .seealso: TSGetCFLTime(), TSADAPTCFL
3297: @*/
3298: PetscErrorCode TSSetCFLTimeLocal(TS ts,PetscReal cfltime)
3299: {
3303: ts->cfltime_local = cfltime;
3304: ts->cfltime = -1.;
3305: return(0);
3306: }
3310: /*@
3311: TSGetCFLTime - Get the maximum stable time step according to CFL criteria applied to forward Euler
3313: Collective on TS
3315: Input Arguments:
3316: . ts - time stepping context
3318: Output Arguments:
3319: . cfltime - maximum stable time step for forward Euler
3321: Level: advanced
3323: .seealso: TSSetCFLTimeLocal()
3324: @*/
3325: PetscErrorCode TSGetCFLTime(TS ts,PetscReal *cfltime)
3326: {
3330: if (ts->cfltime < 0) {
3331: MPI_Allreduce(&ts->cfltime_local,&ts->cfltime,1,MPIU_REAL,MPIU_MIN,((PetscObject)ts)->comm);
3332: }
3333: *cfltime = ts->cfltime;
3334: return(0);
3335: }
3339: /*@
3340: TSVISetVariableBounds - Sets the lower and upper bounds for the solution vector. xl <= x <= xu
3342: Input Parameters:
3343: . ts - the TS context.
3344: . xl - lower bound.
3345: . xu - upper bound.
3347: Notes:
3348: If this routine is not called then the lower and upper bounds are set to
3349: SNES_VI_NINF and SNES_VI_INF respectively during SNESSetUp().
3351: Level: advanced
3353: @*/
3354: PetscErrorCode TSVISetVariableBounds(TS ts, Vec xl, Vec xu)
3355: {
3357: SNES snes;
3360: TSGetSNES(ts,&snes);
3361: SNESVISetVariableBounds(snes,xl,xu);
3362: return(0);
3363: }
3365: #if defined(PETSC_HAVE_MATLAB_ENGINE)
3366: #include <mex.h>
3368: typedef struct {char *funcname; mxArray *ctx;} TSMatlabContext;
3372: /*
3373: TSComputeFunction_Matlab - Calls the function that has been set with
3374: TSSetFunctionMatlab().
3376: Collective on TS
3378: Input Parameters:
3379: + snes - the TS context
3380: - x - input vector
3382: Output Parameter:
3383: . y - function vector, as set by TSSetFunction()
3385: Notes:
3386: TSComputeFunction() is typically used within nonlinear solvers
3387: implementations, so most users would not generally call this routine
3388: themselves.
3390: Level: developer
3392: .keywords: TS, nonlinear, compute, function
3394: .seealso: TSSetFunction(), TSGetFunction()
3395: */
3396: PetscErrorCode TSComputeFunction_Matlab(TS snes,PetscReal time,Vec x,Vec xdot,Vec y, void *ctx)
3397: {
3398: PetscErrorCode ierr;
3399: TSMatlabContext *sctx = (TSMatlabContext *)ctx;
3400: int nlhs = 1,nrhs = 7;
3401: mxArray *plhs[1],*prhs[7];
3402: long long int lx = 0,lxdot = 0,ly = 0,ls = 0;
3412: PetscMemcpy(&ls,&snes,sizeof(snes));
3413: PetscMemcpy(&lx,&x,sizeof(x));
3414: PetscMemcpy(&lxdot,&xdot,sizeof(xdot));
3415: PetscMemcpy(&ly,&y,sizeof(x));
3416: prhs[0] = mxCreateDoubleScalar((double)ls);
3417: prhs[1] = mxCreateDoubleScalar(time);
3418: prhs[2] = mxCreateDoubleScalar((double)lx);
3419: prhs[3] = mxCreateDoubleScalar((double)lxdot);
3420: prhs[4] = mxCreateDoubleScalar((double)ly);
3421: prhs[5] = mxCreateString(sctx->funcname);
3422: prhs[6] = sctx->ctx;
3423: mexCallMATLAB(nlhs,plhs,nrhs,prhs,"PetscTSComputeFunctionInternal");
3424: mxGetScalar(plhs[0]);
3425: mxDestroyArray(prhs[0]);
3426: mxDestroyArray(prhs[1]);
3427: mxDestroyArray(prhs[2]);
3428: mxDestroyArray(prhs[3]);
3429: mxDestroyArray(prhs[4]);
3430: mxDestroyArray(prhs[5]);
3431: mxDestroyArray(plhs[0]);
3432: return(0);
3433: }
3438: /*
3439: TSSetFunctionMatlab - Sets the function evaluation routine and function
3440: vector for use by the TS routines in solving ODEs
3441: equations from MATLAB. Here the function is a string containing the name of a MATLAB function
3443: Logically Collective on TS
3445: Input Parameters:
3446: + ts - the TS context
3447: - func - function evaluation routine
3449: Calling sequence of func:
3450: $ func (TS ts,PetscReal time,Vec x,Vec xdot,Vec f,void *ctx);
3452: Level: beginner
3454: .keywords: TS, nonlinear, set, function
3456: .seealso: TSGetFunction(), TSComputeFunction(), TSSetJacobian(), TSSetFunction()
3457: */
3458: PetscErrorCode TSSetFunctionMatlab(TS ts,const char *func,mxArray *ctx)
3459: {
3460: PetscErrorCode ierr;
3461: TSMatlabContext *sctx;
3464: /* currently sctx is memory bleed */
3465: PetscMalloc(sizeof(TSMatlabContext),&sctx);
3466: PetscStrallocpy(func,&sctx->funcname);
3467: /*
3468: This should work, but it doesn't
3469: sctx->ctx = ctx;
3470: mexMakeArrayPersistent(sctx->ctx);
3471: */
3472: sctx->ctx = mxDuplicateArray(ctx);
3473: TSSetIFunction(ts,PETSC_NULL,TSComputeFunction_Matlab,sctx);
3474: return(0);
3475: }
3479: /*
3480: TSComputeJacobian_Matlab - Calls the function that has been set with
3481: TSSetJacobianMatlab().
3483: Collective on TS
3485: Input Parameters:
3486: + ts - the TS context
3487: . x - input vector
3488: . A, B - the matrices
3489: - ctx - user context
3491: Output Parameter:
3492: . flag - structure of the matrix
3494: Level: developer
3496: .keywords: TS, nonlinear, compute, function
3498: .seealso: TSSetFunction(), TSGetFunction()
3499: @*/
3500: PetscErrorCode TSComputeJacobian_Matlab(TS ts,PetscReal time,Vec x,Vec xdot,PetscReal shift,Mat *A,Mat *B,MatStructure *flag, void *ctx)
3501: {
3502: PetscErrorCode ierr;
3503: TSMatlabContext *sctx = (TSMatlabContext *)ctx;
3504: int nlhs = 2,nrhs = 9;
3505: mxArray *plhs[2],*prhs[9];
3506: long long int lx = 0,lxdot = 0,lA = 0,ls = 0, lB = 0;
3512: /* call Matlab function in ctx with arguments x and y */
3514: PetscMemcpy(&ls,&ts,sizeof(ts));
3515: PetscMemcpy(&lx,&x,sizeof(x));
3516: PetscMemcpy(&lxdot,&xdot,sizeof(x));
3517: PetscMemcpy(&lA,A,sizeof(x));
3518: PetscMemcpy(&lB,B,sizeof(x));
3519: prhs[0] = mxCreateDoubleScalar((double)ls);
3520: prhs[1] = mxCreateDoubleScalar((double)time);
3521: prhs[2] = mxCreateDoubleScalar((double)lx);
3522: prhs[3] = mxCreateDoubleScalar((double)lxdot);
3523: prhs[4] = mxCreateDoubleScalar((double)shift);
3524: prhs[5] = mxCreateDoubleScalar((double)lA);
3525: prhs[6] = mxCreateDoubleScalar((double)lB);
3526: prhs[7] = mxCreateString(sctx->funcname);
3527: prhs[8] = sctx->ctx;
3528: mexCallMATLAB(nlhs,plhs,nrhs,prhs,"PetscTSComputeJacobianInternal");
3529: mxGetScalar(plhs[0]);
3530: *flag = (MatStructure) mxGetScalar(plhs[1]);
3531: mxDestroyArray(prhs[0]);
3532: mxDestroyArray(prhs[1]);
3533: mxDestroyArray(prhs[2]);
3534: mxDestroyArray(prhs[3]);
3535: mxDestroyArray(prhs[4]);
3536: mxDestroyArray(prhs[5]);
3537: mxDestroyArray(prhs[6]);
3538: mxDestroyArray(prhs[7]);
3539: mxDestroyArray(plhs[0]);
3540: mxDestroyArray(plhs[1]);
3541: return(0);
3542: }
3547: /*
3548: TSSetJacobianMatlab - Sets the Jacobian function evaluation routine and two empty Jacobian matrices
3549: vector for use by the TS routines in solving ODEs from MATLAB. Here the function is a string containing the name of a MATLAB function
3551: Logically Collective on TS
3553: Input Parameters:
3554: + ts - the TS context
3555: . A,B - Jacobian matrices
3556: . func - function evaluation routine
3557: - ctx - user context
3559: Calling sequence of func:
3560: $ flag = func (TS ts,PetscReal time,Vec x,Vec xdot,Mat A,Mat B,void *ctx);
3563: Level: developer
3565: .keywords: TS, nonlinear, set, function
3567: .seealso: TSGetFunction(), TSComputeFunction(), TSSetJacobian(), TSSetFunction()
3568: */
3569: PetscErrorCode TSSetJacobianMatlab(TS ts,Mat A,Mat B,const char *func,mxArray *ctx)
3570: {
3571: PetscErrorCode ierr;
3572: TSMatlabContext *sctx;
3575: /* currently sctx is memory bleed */
3576: PetscMalloc(sizeof(TSMatlabContext),&sctx);
3577: PetscStrallocpy(func,&sctx->funcname);
3578: /*
3579: This should work, but it doesn't
3580: sctx->ctx = ctx;
3581: mexMakeArrayPersistent(sctx->ctx);
3582: */
3583: sctx->ctx = mxDuplicateArray(ctx);
3584: TSSetIJacobian(ts,A,B,TSComputeJacobian_Matlab,sctx);
3585: return(0);
3586: }
3590: /*
3591: TSMonitor_Matlab - Calls the function that has been set with TSMonitorSetMatlab().
3593: Collective on TS
3595: .seealso: TSSetFunction(), TSGetFunction()
3596: @*/
3597: PetscErrorCode TSMonitor_Matlab(TS ts,PetscInt it, PetscReal time,Vec x, void *ctx)
3598: {
3599: PetscErrorCode ierr;
3600: TSMatlabContext *sctx = (TSMatlabContext *)ctx;
3601: int nlhs = 1,nrhs = 6;
3602: mxArray *plhs[1],*prhs[6];
3603: long long int lx = 0,ls = 0;
3609: PetscMemcpy(&ls,&ts,sizeof(ts));
3610: PetscMemcpy(&lx,&x,sizeof(x));
3611: prhs[0] = mxCreateDoubleScalar((double)ls);
3612: prhs[1] = mxCreateDoubleScalar((double)it);
3613: prhs[2] = mxCreateDoubleScalar((double)time);
3614: prhs[3] = mxCreateDoubleScalar((double)lx);
3615: prhs[4] = mxCreateString(sctx->funcname);
3616: prhs[5] = sctx->ctx;
3617: mexCallMATLAB(nlhs,plhs,nrhs,prhs,"PetscTSMonitorInternal");
3618: mxGetScalar(plhs[0]);
3619: mxDestroyArray(prhs[0]);
3620: mxDestroyArray(prhs[1]);
3621: mxDestroyArray(prhs[2]);
3622: mxDestroyArray(prhs[3]);
3623: mxDestroyArray(prhs[4]);
3624: mxDestroyArray(plhs[0]);
3625: return(0);
3626: }
3631: /*
3632: TSMonitorSetMatlab - Sets the monitor function from Matlab
3634: Level: developer
3636: .keywords: TS, nonlinear, set, function
3638: .seealso: TSGetFunction(), TSComputeFunction(), TSSetJacobian(), TSSetFunction()
3639: */
3640: PetscErrorCode TSMonitorSetMatlab(TS ts,const char *func,mxArray *ctx)
3641: {
3642: PetscErrorCode ierr;
3643: TSMatlabContext *sctx;
3646: /* currently sctx is memory bleed */
3647: PetscMalloc(sizeof(TSMatlabContext),&sctx);
3648: PetscStrallocpy(func,&sctx->funcname);
3649: /*
3650: This should work, but it doesn't
3651: sctx->ctx = ctx;
3652: mexMakeArrayPersistent(sctx->ctx);
3653: */
3654: sctx->ctx = mxDuplicateArray(ctx);
3655: TSMonitorSet(ts,TSMonitor_Matlab,sctx,PETSC_NULL);
3656: return(0);
3657: }
3658: #endif