
MPICH Installer’s Guide∗

Version 3.4

Mathematics and Computer Science Division

Argonne National Laboratory

Abdelhalim Amer Pavan Balaji Wesley Bland
William Gropp Yanfei Guo Rob Latham Huiwei Lu

Lena Oden Antonio J. Peña Ken Raffenetti
Sangmin Seo Min Si Rajeev Thakur Junchao Zhang

Xin Zhao

January 15, 2021

∗This work was supported by the Mathematical, Information, and Computational Sci-
ences Division subprogram of the Office of Advanced Scientific Computing Research, Sci-
DAC Program, Office of Science, U.S. Department of Energy, under Contract DE-AC02-
06CH11357.

1

Contents

1 Introduction 1

2 Quick Start 1

2.1 Prerequisites . 1

2.2 From A Standing Start to Running an MPI Program 2

2.3 Selecting the Compilers . 6

2.4 Compiler Optimization Levels 7

2.5 Common Non-Default Configuration Options 8

2.5.1 The Most Important Configure Options 8

2.5.2 Using the Absoft Fortran compilers with MPICH . . . 9

2.6 Shared Libraries . 9

2.7 What to Tell the Users . 9

3 Migrating from MPICH1 9

3.1 Configure Options . 10

3.2 Other Differences . 10

4 Choosing the Communication Device 11

5 Installing and Managing Process Managers 12

5.1 hydra . 12

5.2 gforker . 12

6 Testing 13

7 Benchmarking 13

8 All Configure Options 14

i

1 INTRODUCTION 1

1 Introduction

This manual describes how to obtain and install MPICH, the MPI imple-
mentation from Argonne National Laboratory. (Of course, if you are reading
this, chances are good that you have already obtained it and found this doc-
ument, among others, in its doc subdirectory.) This Guide will explain how
to install MPICH so that you and others can use it to run MPI applications.
Some particular features are different if you have system administration
privileges (can become “root” on a Unix system), and these are explained
here. It is not necessary to have such privileges to build and install MPICH.
In the event of problems, send mail to discuss@mpich.org. Once MPICH is
installed, details on how to run MPI jobs are covered in the MPICH User’s
Guide, found in this same doc subdirectory.

MPICH has many options. We will first go through a recommended,
“standard” installation in a step-by-step fashion, and later describe alterna-
tive possibilities.

2 Quick Start

In this section we describe a “default” set of installation steps. It uses the de-
fault set of configuration options, which builds the nemesis communication
device and the Hydra process manager, for languages C, C++, Fortran-77,
and Fortran-90 (if those compilers exist), with compilers chosen automati-
cally from the user’s environment, without tracing and debugging options.
It uses the VPATH feature of make, so that the build process can take place
on a local disk for speed.

2.1 Prerequisites

For the default installation, you will need:

1. A copy of the distribution, mpich.tar.gz.

2. A C compiler.

3. A Fortran-77, Fortran-90, and/or C++ compiler if you wish to write
MPI programs in any of these languages.

2 QUICK START 2

4. Any one of a number of Unix operating systems, such as IA32-Linux.
MPICH is most extensively tested on Linux; there remain some dif-
ficulties on systems to which we do not currently have access. Our
configure script attempts to adapt MPICH to new systems.

Configure will check for these prerequisites and try to work around defi-
ciencies if possible. (If you don’t have Fortran, you will still be able to use
MPICH, just not with Fortran applications.)

2.2 From A Standing Start to Running an MPI Program

Here are the steps from obtaining MPICH through running your own parallel
program on multiple machines.

1. Unpack the tar file.

tar xfz mpich.tar.gz

If your tar doesn’t accept the z option, use

gunzip -c mpich.tar.gz | tar xf -

Let us assume that the directory where you do this is /home/you/libraries.
It will now contain a subdirectory named mpich-3.4.

2. Choose an installation directory (the default is /usr/local/bin):

mkdir /home/you/mpich-install

It will be most convenient if this directory is shared by all of the
machines where you intend to run processes. If not, you will have to
duplicate it on the other machines after installation. Actually, if you
leave out this step, the next step will create the directory for you.

3. Choose a build directory. Building will proceed much faster if your
build directory is on a file system local to the machine on which the
configuration and compilation steps are executed. It is preferable that
this also be separate from the source directory, so that the source
directories remain clean and can be reused to build other copies on
other machines.

2 QUICK START 3

mkdir /tmp/you/mpich-3.4

4. Choose any configure options. See Section 2.5.1 for a description of
the most important options to consider.

5. Configure MPICH, specifying the installation directory, and running
the configure script in the source directory:

cd /tmp/you/mpich-3.4

/home/you/libraries/mpich-3.4/configure \

-prefix=/home/you/mpich-install |& tee c.txt

where the \ means that this is really one line. (On sh and its deriva-
tives, use 2>&1 | tee c.txt instead of |& tee c.txt). Other con-
figure options are described below. Check the c.txt file to make sure
everything went well. Problems should be self-explanatory, but if not,
send c.txt to discuss@mpich.org. The file config.log is created
by configure and contains a record of the tests that configure per-
formed. It is normal for some tests recorded in config.log to fail.

6. Build MPICH:

make |& tee m.txt (for csh and tcsh)

OR

make 2>&1 | tee m.txt (for bash and sh)

This step should succeed if there were no problems with the preceding
step. Check file m.txt. If there were problems, do a make clean and
then run make again with VERBOSE=1

make VERBOSE=1 |& tee m.txt (for csh and tcsh)

OR

make VERBOSE=1 2>&1 | tee m.txt (for bash and sh)

and then send m.txt and c.txt to discuss@mpich.org.

7. Install the MPICH commands:

make install |& tee mi.txt

2 QUICK START 4

This step collects all required executables and scripts in the bin subdi-
rectory of the directory specified by the prefix argument to configure.

(For users who want an install directory structure compliant to GNU
coding standards (i.e., documentation files go to ${datarootdir}/doc/${PACKAGE},
architecture independent read-only files go to ${datadir}/${PACKAGE}),
replace make install by

make install PACKAGE=mpich-<versrion>

and corresponding installcheck step should be

make installcheck PACKAGE=mpich-<version>

Setting PACKAGE in make install or make installcheck step is
optional and unnecessary for typical MPI users.)

8. Add the bin subdirectory of the installation directory to your path:

setenv PATH /home/you/mpich-install/bin:$PATH

for csh and tcsh, or

export PATH=/home/you/mpich-install/bin:$PATH

for bash, and

PATH=/home/you/mpich-install/bin:$PATH

export PATH

for sh (the bash syntax may work for more recent implementations of
sh). Check that everything is in order at this point by doing

which mpicc

which mpiexec

All should refer to the commands in the bin subdirectory of your
install directory. It is at this point that you will need to duplicate this
directory on your other machines if it is not in a shared file system.

9. Check that you can reach these machines with ssh or rsh without
entering a password. You can test by doing

2 QUICK START 5

ssh othermachine date

or

rsh othermachine date

If you cannot get this to work without entering a password, you will
need to configure ssh or rsh so that this can be done.

10. Test the setup you just created:

mpiexec -f machinefile -n <number> hostname

The machinefile contains the list of hosts you want to run the exe-
cutable on.

% cat machinefile

host1 # Run 1 process on host1

host2:4 # Run 4 processes on host2

host3:2 # Run 2 processes on host3

host4:1 # Run 1 process on host4

11. Now we will run an MPI job, using the mpiexec command as specified
in the MPI standard.

As part of the build process for MPICH, a simple program to compute
the value of π by numerical integration is created in the mpich-3.4/examples
directory. If the current directory is the top level MPICH build direc-
tory, then you can run this program with

mpiexec -n 5 -f machinefile ./examples/cpi

The cpi example will tell you which hosts it is running on.

There are many options for mpiexec, by which multiple executables
can be run, hosts can be specified, separate command-line arguments
and environment variables can be passed to different processes, and
working directories and search paths for executables can be specified.
Do

mpiexec --help

2 QUICK START 6

for details. A typical example is:

mpiexec -f machinefile -n 1 ./main : -n 19 ./child

to ensure that the process with rank 0 runs on your workstation.

The arguments between ‘:’s in this syntax are called “argument sets,”
since they apply to a set of processes. More argments are described in
the User’s Guide.

If you have completed all of the above steps, you have successfully in-
stalled MPICH and run an MPI example.

2.3 Selecting the Compilers

The MPICH configure step will attempt to find the C, C++, and Fortran
compilers for you, but if you either want to override the default or need to
specify a compiler that configure doesn’t recognize, you can specify them on
the command line using these variables

CC The C compiler.

CXX The C++ compiler. Use --disable-cxx if you do not want to build
the MPI C++ interface

F77 The Fortran 77 compiler (for the original MPI Fortran bindings). Use
--disable-f77 if you do not want to build either the Fortran 77 or
Fortran 90 MPI interfaces

FC The Fortran 90 (or later) compiler. Use --disable-fc if you do not
want to build the Fortran 90 MPI interfaces. Note that in previous
versions of MPICH, the variable name was F90. As Fortran has had
3 major releases since Fortran 90 (95, 2003, and 2008), most tools,
including those built with GNU autotools, have or are changing to use
FC instead of F90.

For example, to select the Intel compilers instead of the GNU compilers on
a system with both, use

./configure CC=icc CXX=icpc F77=ifort FC=ifort ...

Note the use of the same Fortran compiler, ifort, for both Fortran 77 and
Fortran 90; this is an increasingly common choice.

2 QUICK START 7

2.4 Compiler Optimization Levels

MPICH can be configured with two sets of compiler flags: CFLAGS, CXXFLAGS,
FFLAGS, FCFLAGS (abbreviated as xFLAGS) and MPICHLIB CFLAGS, MPICHLIB CXXFLAGS,
MPICHLIB FFLAGS, MPICHLIB FCFLAGS (abbreviated as MPICHLIB xFLAGS)
for compilation; LDFLAGS and MPICHLIB LDFLAGS for linking. All these flags
can be set as part of configure command or through environment variables.
(CPPFLAGS stands for C preprocessor flags, which should NOT be set)

Both xFLAGS and MPICHLIB xFLAGS affect the compilation of the MPICH
libraries. However, only xFLAGS is appended to MPI wrapper scripts, mpicc
and friends.

MPICH libraries are built with default compiler optimization, -O2, which
can be modified by --enable-fast configure option. For instance, --disable-fast
disables the default optimization option. --enable-fast=O<n> sets default
compiler optimization as -O<n> (note that this assumes that the compiler
accepts this format). For more details of --enable-fast, see the output of
configure --help. Any other complicated optimization flags for MPICH
libraries have to be set throught MPICHLIB xFLAGS. CFLAGS and friends are
empty by default.

For example, to build a production MPICH environment with -O3 for
all language bindings, one can simply do

./configure --enable-fast=all,O3

or

./configure --enable-fast=all MPICHLIB_CFLAGS=-O3 \

MPICHLIB_FFLAGS=-O3 \

MPICHLIB_CXXFLAGS=-O3 \

MPICHLIB_FCFLAGS=-O3

This will cause the MPICH libraries to be built with -O3, and -O3 will
not be included in the mpicc and other MPI wrapper script.

2 QUICK START 8

2.5 Common Non-Default Configuration Options

A brief discussion of some of the configure options is found in Section 8.
Here we comment on some of the most commonly used options.

2.5.1 The Most Important Configure Options

–prefix Set the installation directories for MPICH.

–enable-debuginfo Provide access to the message queues for debuggers
such as Totalview.

–enable-g Build MPICH with various debugging options. This is of interest
primarily to MPICH developers. The options

--enable-g=dbg,mem,log

are recommended in that case.

–enable-fast Configure MPICH for fastest performance at the expense of
error reporting and other program development aids. This is recom-
mended only for getting the best performance out of proven production
applications, and for benchmarking.

–enable-shared Build MPICH with shared libraries. MPICH will try to
automatically detect the type of shared library support required. See
Section 2.6 for more details.

–with-pm Select the process manager. The default is hydra; also useful are
gforker and remshell. You can build with all three process managers
by specifying

--with-pm=hydra:gforker:remshell

–with-java Set the location of Java installation. This option is necessary
only if the default Java installation in your PATH does not contain a
valid Java installation for Jumpshot, e.g.

--with-java=/opt/jdk1.6.0

3 MIGRATING FROM MPICH1 9

2.5.2 Using the Absoft Fortran compilers with MPICH

For best results, it is important to force the Absoft Fortran compilers to
make all routine names monocase. In addition, if lower case is chosen (this
will match common use by many programs), you must also tell the the
Absoft compiles to append an underscore to global names in order to access
routines such as getarg (getarg is not used by MPICH but is used in some
of the tests and is often used in application programs). We recommend
configuring MPICH with the following options

setenv F77 f77

setenv FFLAGS "-f -N15"

setenv FCFLAGS "-YALL_NAMES=LCS -YEXT_SFX=_"

./configure

2.6 Shared Libraries

To have shared libraries created when MPICH is built, specify the following
when MPICH is configured:

configure --enable-shared

2.7 What to Tell the Users

Now that MPICH has been installed, the users have to be informed of how
to use it. Part of this is covered in the User’s Guide. Other things users
need to know are covered here.

3 Migrating from MPICH1

MPICH is an all-new rewrite of MPICH1. Although the basic steps for
installation have remained the same (configure, make, make install), a
number of things have changed. In this section we attempt to point out
what you may be used to in MPICH1 that are now different in MPICH.

3 MIGRATING FROM MPICH1 10

3.1 Configure Options

The arguments to configure are different in MPICH1 and MPICH; the
Installer’s Guide discusses configure. In particular, the newer configure
in MPICH does not support the -cc=<compiler-name> (or -fc, -c++, or
-f90) options. Instead, many of the items that could be specified in the
command line to configure in MPICH1 must now be set by defining an
environment variable. E.g., while MPICH1 allowed

./configure -cc=pgcc

MPICH requires

./configure CC=pgcc

Basically, every option to the MPICH-1 configure that does not start with
--enable or --with is not available as a configure option in MPICH. In-
stead, environment variables must be used. This is consistent (and required)
for use of version 2 GNU autoconf.

3.2 Other Differences

Other differences between MPICH1 and MPICH include the handling of
process managers and the choice of communication device.

For example, the new process managers have a new format and slightly
different semantics for the -machinefile option. Assume that you type this
data into a file named machfile:

bp400:2

bp401:2

bp402:2

bp403:2

If you then run a parallel job with this machinefile, you would expect
ranks 0 and 1 to run on bp400 because it says to run 2 processes there before
going on to bp401. Ranks 2 and 3 would run on bp401, and rank 4 on bp402,
e.g.:

4 CHOOSING THE COMMUNICATION DEVICE 11

mpiexec -l -machinefile machfile -n 5 hostname

produces:

0: bp400

1: bp400

2: bp401

3: bp401

4: bp402

4 Choosing the Communication Device

MPICH is designed to be build with many different communication devices,
allowing an implementation to be tuned for different communication fabrics.
A simple communication device, known as “ch3” (for the third version of
the “channel” interface) is provided with MPICH and is the default choice.

The ch3 device itself supports a variety of communication methods.
These are specified by providing the name of the method after a colon in the
--with-device configure option. For example, --with-device=ch3:sock
selects the (older) socket-base communication method. Methods supported
by the MPICH group include:

ch3:nemesis This method is our new, high performance method. It has
been made the default communication channel starting the 1.1 release
of MPICH. It uses shared-memory to send messages between processes
on the same node and the network for processes between nodes. Cur-
rently sockets and Myrinet-MX are supported networks. It supports
MPI THREAD MULTIPLE and other levels of thread safety.

ch3:sock This method uses sockets for all communications between pro-
cesses. It supports MPI THREAD MULTIPLE and other levels of thread
safety.

Most installations should use the default ch3:nemesis method for best
performance. For platforms that are not supported by nemesis, the ch3:sock
method is suggested.

5 INSTALLING AND MANAGING PROCESS MANAGERS 12

MPICH is designed to efficiently support all types of systems. The
ch3:nemesis device is the primary focus of the MPICH group, but other
research groups and computer vendors can and have developed both their
own ch3 “channels” as well as complete communication “devices” in place
of ch3.

5 Installing and Managing Process Managers

MPICH has been designed to work with multiple process managers; that
is, although you can start MPICH jobs with mpiexec, there are different
mechanisms by which your processes are started. An interface (called PMI)
isolates the MPICH library code from the process manager. Currently three
process managers are distributed with MPICH

hydra This is the default process manager tha natively uses the existing
daemons on the system such as ssh, slurm, pbs.

gforker This is a simple process manager that creates all processes on a
single machine. It is useful both for debugging and for running on
shared memory multiprocessors.

5.1 hydra

hydra is the default process manager that launches processes using the na-
tive daemons present on the system such as ssh, slurm, pbs, etc. To configure
with the hydra process manager, use

configure --with-pm=hydra ...

5.2 gforker

gforker is a simple process manager that runs all processes on a single node;
it’s version of mpiexec uses the system fork and exec calls to create the
new processes. To configure with the gforker process manager, use

configure --with-pm=gforker ...

6 TESTING 13

6 Testing

Once MPICH has been installed, you can test it by running some of the
example programs in the examples directory. A more thorough test can
be run with the command make testing. This will produce a summary
on standard output, along with an XML version of the test results in
mpich/test/mpi. In addition, running make testing from the top-level
(mpich) directory will run tests of the commands, such as mpicc and mpiexec,
that are included with MPICH.

Other MPI test suites are available from http://www.mcs.anl.gov/

mpi/mpi-test/tsuite.html. As part of the MPICH development, we run
the MPICH1, MPICH, C++, and Intel test suites every night and post the
results on http://www.mpich.org/static/cron/tests/. Other tests are
run on an occasional basis.

7 Benchmarking

There are many benchmarking programs for MPI implementations. Three
that we use are mpptest (http://www.mcs.anl.gov/mpi/mpptest), netpipe
(http://www.scl.ameslab.gov/netpipe), and SkaMPI (http://liinwww.
ira.uka.de/~skampi). Each of these has different strengths and weaknesses
and reveals different properties of the MPI implementation.

In addition, the MPICH test suite contains a few programs to test for
performance artifacts in the directory test/mpi/perf. An example of a per-
formance artifact is markedly different performance for the same operation
when performed in two different ways. For example, using an MPI datatype
for a non-contiguous transfer should not be much slower than packing the
data into a contiguous buffer, sending it as a contiguous buffer, and then
unpacking it into the destination buffer. An example of this from the MPI-1
standard illustrates the use of MPI datatypes to transpose a matrix “on the
fly,” and one test in test/mpi/perf checks that the MPI implementation
performs well in this case.

http://www.mcs.anl.gov/mpi/mpi-test/tsuite.html
http://www.mcs.anl.gov/mpi/mpi-test/tsuite.html
http://www.mpich.org/static/cron/tests/
http://www.mcs.anl.gov/mpi/mpptest
http://www.scl.ameslab.gov/netpipe
http://liinwww.ira.uka.de/~skampi
http://liinwww.ira.uka.de/~skampi

8 ALL CONFIGURE OPTIONS 14

8 All Configure Options

To get the latest list of all the configure options recognized by the top-level
configure, use:

configure --help

Not all of these options may be fully supported yet.

Notes on the configure options. The --with-htmldir and --with-docdir
options specify the directories into which the documentation will be installed
by make install.

	Introduction
	Quick Start
	Prerequisites
	From A Standing Start to Running an MPI Program
	Selecting the Compilers
	Compiler Optimization Levels
	Common Non-Default Configuration Options
	The Most Important Configure Options
	Using the Absoft Fortran compilers with MPICH

	Shared Libraries
	What to Tell the Users

	Migrating from MPICH1
	Configure Options
	Other Differences

	Choosing the Communication Device
	Installing and Managing Process Managers
	hydra
	gforker

	Testing
	Benchmarking
	All Configure Options

