
SAMRAI User’s Guide

The SAMRAI Team

1

Contents

1 Introduction 3
1.1 Purpose of This Document . 3
1.2 SAMRAI Motivation and Design Goals . 3

2 Restart 4
2.1 Overview . 4
2.2 Overview of Classes used in Restart . 4
2.3 Checkpoint and Restart Process . 4
2.4 Restart when SAMRAI is in total control . 6
2.5 Restart when the application manages file creation . 6
2.6 Restart when the application manages file format . 7
2.7 DatabaseFactory and the RestartManager . 8

2

1 Introduction

1.1 Purpose of This Document

The main purpose of this user’s guide is to describe the SAMRAI library and provide an overview of the
main capabilities of SAMRAI. This is not a reference manual fully documenting all of the classes. The
documentation for each class is included in the class header file and in the Doxygen documentation provided
with the library and should be referenced when more detailed API information in needed.

This document is currently very sparse and is barely a placeholder at the moment. The goal is to
document additions to the library in this document and fill in older parts as resources permit.

1.2 SAMRAI Motivation and Design Goals

The primary mission of the SAMRAI project is to provide a framework to enable the development of
structured adaptive mesh refinement (SAMR) applications. SAMRAI is an object oriented C++ library
specifically targeted at parallel machines and uses MPI for it’s parallel programming model. SAMRAI is
used within LLNL for the exploration of SAMR concepts.

The primary design goals of the SAMRAI framework are:

• Reduce development time for new SAMR applications by leveraging existing an existing framework.

• Providing high-level abstractions that manage the complexity of data dependencies on an SAMR grid.

• Support the development of large scale parallel SAMR applications.

• Enable computational scientists to explore new applications and algorithms through the composition
and extension of existing SAMR software components.

SAMRAI is a large package to learn. As with any sizable object oriented framework, there are abstractions
being used which can make it seem like many layers of complexity are being added with little benefit. In some
cases this is a result of an intentional focus on flexibility and extensibility over ease of use. The additional
complexity is not required for the simple problems however it does enable the framework to be used when
simple isn’t sufficient.

Some knowledge of design patterns is beneficial when trying to understand SAMRAI. No attempt is made
to explain the patterns used as better explanations already exist in the plethora of design patterns books
and web pages. In particular if Singleton, Factory, and Strategy patterns are unfamiliar, a quick web search
will help understand the SAMRAI documentation.

3

2 Restart

2.1 Overview

This chapter covers the restart API in SAMRAI. The restart API is used to checkpoint the state of a SAMRAI
application and restart from that checkpoint. The obvious use is the case of machine failure during a long
run.

SAMRAI supports several methods for creation of restart files to enable control over where the SAMRAI
restart information is stored. All of the options make this section seem way more complicated than it should.
However for most applications there are really just two basic questions an application developer needs to
answer to figure out which of the API’s to use:

• Is SAMRAI in control of opening and closing the restart file?

• Is the restart information stored in a HDF, Silo, or other file format?

For applications starting from scratch or applications that do not have an existing restart capability,
SAMRAI can handle creating the restart files and writing the data to them. For applications that have an
existing HDF or Silo restart file, SAMRAI can write it’s data to that existing file.

In the extreme case, an application with a different file format or mechanism for doing restart can parse
the SAMRAI restart information from a simple in-memory database and write the information to whatever
format is desired.

The sections below provide an overview of the principle classes involved and provide examples of how
they would be used in several scenarios.

2.2 Overview of Classes used in Restart

The principle classes used in restart are:

RestartManager Manages the restart process. Objects that have restart data are registered with the
restart manager and the restart manager informs the registered objects when they need to dump data.

Serializable The interface classes need to implement in order to be restartable.

Database The interface for interacting with a restart file. Used to put/get data to/from a restart file.
Implementations are provided for HDF and Silo files.

Other classes that play a role in restart are:

DatabaseFactory Factory used by the RestartManager to create databases when the RestartManager is
responsible for creating the restart files.

2.3 Checkpoint and Restart Process

The general process for creating a restart file in SAMRAI begins with objects registering themselves with the
RestartManager in the constructor for the class. Classes being registered must implement the Serializable
interface. The following code snippet shows how the registration is done:

tbox::RestartManager::getManager() -> registerRestartItem(object_name, this);

object name should be a unique name that identifies the object. This name will be used to identify the
information in the restart file so that it can be retrieved. Note this name should generally be unique to each
object not class so that the data for multiple objects can be retrieved. Singletons are an obvious exception
to this rule.

At some time-step (often specified as some time interval) the application informs the RestartManager
that a restart file should be saved. This is done via the writeRestartFile method:

4

tbox::RestartManager::getManager() -> writeRestartFile(
restart_write_dirname,
iteration_num);

restart write dirname is a string containing the path to a directory that will be used to store the
restart files. iteration num is an integer used to specify the dump number; this is often the iteration count
for the time loop in the application. SAMRAI will create a set of HDF files containing the restart information
(one file per processor).

Internally RestartManager iterates over all the registered objects and calls the PutToDatabase method
(from the Serializable interface) and the objects make “put” calls (e.g. putDoubleArray()) on the
Database object. PutToDatabase for a class will look similar to this example from the LinAdv code:

void LinAdv::putToDatabase(tbox::Pointer<tbox::Database> db)
{

db->putInteger("LINADV_VERSION",LINADV_VERSION);

db->putDoubleArray("d_advection_velocity",d_advection_velocity,NDIM);

db->putInteger("d_godunov_order", d_godunov_order);
db->putString("d_corner_transport", d_corner_transport);
db->putIntegerArray("d_nghosts", (int*)d_nghosts, NDIM);
db->putIntegerArray("d_fluxghosts", (int*)d_fluxghosts, NDIM);

....

Note LINADV VERSION is used track version information to prevent reading an old restart file into a newer
implementation.

The SAMRAI restart process is fairly easy as well but differs in some details from other restart mechanisms
which may cause some confusion. For restart the existing restart file is opened as a Database object and
this Database is read in each of the constructors. The constructors use this data along with the input file to
initialize state. SAMRAI tries to preserve the notion that object creation is object initialization so restart
is tied with object creation. This is the reason why there is no symmetric getFromDatabase method in the
Serializable interface as one might expect. The following code snippet is from the LinAdv example code
and shows how the RestartManager is checked to see if restart is being done and if so the state is restored
using the getFromRestart method. getFromRestart restores state from the database using “get” calls on
the database (just invert the “put” operations done in the putToDatabase method).

/*
* Initialize object with data read from given input/restart databases.
*/
bool is_from_restart = tbox::RestartManager::getManager()->isFromRestart();
if (is_from_restart){

getFromRestart();
}
getFromInput(input_db, is_from_restart);

SAMRAI allows changing of some values from the input file on restart. A restart need not be exactly the
same state as was originally setup if the user has edited the input file. It is the responsibility of each SAMRAI
class to determine if information should come from the restart file or the input file. Each class constructor
needs ensure input changes are consistent with the restart state. This capability should obviously be used
with some caution.

Note that SAMRAI a restart file is NOT sufficient to restore state, the input file is needed. SAMRAI
does not replicate the information in the input file to the restart file. This is different from other restart
mechanism that store all of the required state in the restart file.

5

2.4 Restart when SAMRAI is in total control

If you do not have any existing restart capabilities the easiest way to do restart is to let SAMRAI control
the file for restart and the file format.

Dumping data to a restart file is very simple; simply call to the writeRestartFile method of the
RestartManager singleton as shown in this sample code:

if ((iteration_num % restart_interval) == 0) {
tbox::RestartManager::getManager() -> writeRestartFile(

restart_write_dirname,
iteration_num);

}

Restoring is done with a call to the openRestartFile method before constructing SAMRAI objects. As
noted previously the SAMRAI constructors will load state from the restart file if one has been opened by
the RestartManager.

tbox::RestartManager* restart_manager = tbox::RestartManager::getManager();

restart_manager -> openRestartFile(restart_read_dirname,
restore_num,
tbox::SAMRAI_MPI::getNodes());

/*
* SAMRAI constructors will pick up state from the restart file if
* one was used.
*/

Note that the openRestartFile must be done before SAMRAI objects are created.

2.5 Restart when the application manages file creation

If you have existing restart capabilities based on HDF or Silo and want SAMRAI to save/restore state from
that existing file, the database API’s have the capability to “attach” to an existing file. This avoids having
restart state spread over multiple files.

The basic process is for the application to create or open the HDF/Silo file, instantiate one of Database
objects (HDFDatabase or SiloDatabase) and then use the attachToHDF or attachToSilo method to tell
SAMRAI where (group for HDF or path for Silo) in the file SAMRAI should write/read it’s information.
The RestartManager method setRootDatabase is used to force the RestartManager to use that Database
instead of opening one of it’s own as in the previous section.

This code sample shows the calls for saving state to an application managed Silo file. HDF would be
similar; replacing the SiloDatabase with an HDFDatabase.

// Create a SiloDatabase
tbox::Pointer<tbox::SiloDatabase> database =

new tbox::SiloDatabase("SAMRAI Restart");

// The application opens a Silo file
std::string name = "./restart." +

tbox::Utilities::processorToString(tbox::SAMRAI_MPI::getRank()) +
".silo";

DBfile *silo_file = DBCreate(name.c_str(), DB_CLOBBER, DB_LOCAL,

6

NULL, DB_PDB);

// Attach the database to application file at the
// specified Silo path inside the file
database -> attachToFile(silo_file, "/SAMRAI");

// Tell restart manager to use the Silo database
restart_manager -> setRootDatabase(database);

// Write the current SAMRAI state.
// This will store the information to the Silo file via
// the Silo database.
restart_manager->writeRestartToDatabase();

// Other writing to the Silo file by the appliation.

// Close the database and the Silo file
database -> close();
DBClose(silo_file);

This code sample shows the calls for restoring state from an application managed Silo file. HDF would
be similar; replacing the SiloDatabase with an HDFDatabase.

// Create the Silo database instance
database = new tbox::SiloDatabase("SAMRAI Restart");

// Open the Silo file that has the restart information
silo_file = DBOpen(name.c_str(), DB_UNKNOWN, DB_READ);

// Attach the Silo file to the SiloDatabase
database -> attachToFile(silo_file, "/SAMRAI");

// Tell restart manager to use the Silo database
restart_manager -> setRootDatabase(database);

// Restore state

// Close the database and Silo file
database -> close();
DBClose(silo_file);

2.6 Restart when the application manages file format

If you have existing restart files which are not HDF or Silo and/or you want total control over the scheme
used to store the SAMRAI data there are two options.

The first method is to create your own class that implements the Database API. The existing Silo or
HDF implementations should serve as a decent starting point for doing this. For example, implementing
a Database for reading/writing XML should be relatively simple. The new user supplied Database would
then supplied to the RestartManager setRootDatbase method in a similar manner to the previous section.

The second option is to use the MemoryDatabase and is not recommended if it can be avoided. In this
case a Database that resides in memory is used as a temporary location for the restart data. To create

7

a checkpoint file you would first dump the state to the the MemoryDatabase. The in memory database
would then be traversed and the data can be stored in whatever format you wish. Traversal can be done
using the getAllKeys and getArrayType methods to walk the database hierarchy. Restart is simply the
inverse, create a MemoryDatabase and fill it in with data from your file restoring the original structure.
The setRootDatabase is then used to provide SAMRAI with restart information. This method is more
complicated than the other mechanisms but allows you total control over the structure of data in the restart
file. Note that this method requires additional memory since data is being replicated temporarily in an
instance of the MemoryDatabase.

2.7 DatabaseFactory and the RestartManager

When the RestartManager is in control of file creation it uses a DatabaseFactory to create new database
objects. By default this is set to the HDFDatabaseFactory. The setDatabaseFactory method can be used
to override this default behavior if a different file format is desired. The SiloDatabaseFactor will create
Silo files or if you have created your own Database implementation you can also create a factory for it to
allow the RestartManager control over file creation. Controlling file creation using a DatabaseFactor and
the RestartManager is entirely optional; it is simply a convenience so you don’t have to manage the creation
process in the application code main time loop.

8

