
A Reinforcement Learning Approach for
Performance-aware Reduction in Power

Consumption of Data Center Compute Nodes
Akhilesh Raj

Department of Electrical Engineering
Vanderbilt University

Nashville, Tennessee, USA
akhilesh.raj@vanderbilt.edu

Swann Perarnau
Mathematics and Computer Science Division

Argonne National Laboratory
Lemont, Illinois, USA

swann@anl.gov

Aniruddha Gokhale
Department of Computer Science

Vanderbilt University
Nashville, Tennessee, USA
a.gokhale@vanderbilt.edu

Abstract—As Exascale computing becomes a reality, the energy
needs of compute nodes in cloud data centers will continue to
grow. A common approach to reducing this energy demand is
to limit the power consumption of hardware components when
workloads are experiencing bottlenecks elsewhere in the system.
However, designing a resource controller capable of detecting
and limiting power consumption on-the-fly is a complex issue and
can also adversely impact application performance. In this paper,
we explore the use of Reinforcement Learning (RL) to design a
power capping policy on cloud compute nodes using observations
on current power consumption and instantaneous application
performance (heartbeats). By leveraging the Argo Node Resource
Management (NRM) software stack in conjunction with the Intel
Running Average Power Limit (RAPL) hardware control mecha-
nism, we design an agent to control the maximum supplied power
to processors without compromising on application performance.
Employing a Proximal Policy Optimization (PPO) agent to learn
an optimal policy on a mathematical model of the compute nodes,
we demonstrate and evaluate using the STREAM benchmark
how a trained agent running on actual hardware can take actions
by balancing power consumption and application performance.

Index Terms—HPC, Power Management, Energy issues in data
centers, Reinforcement Learning, RAPL.

I. INTRODUCTION

Cloud data centers are increasingly providing a variety
of high performance computing nodes including hardware
accelerators to support the needs of a range of compute-
intensive applications including various machine learning
training/inferencing and scientific applications. In these setups,
a large number of compute nodes are networked together via
high-speed networks to provide high performance computing
capabilities. This growth, however, has given rise to several
challenges, notably in the areas of energy efficiency. For
instance, Darrow et al. in [1] pointed out that data centers
consume 10-50 times the energy per floor space compared
to any other commercial building and the consumed energy
constitute 2% of the total US energy consumption. Multiple
surveys and studies [1]–[5] have shown that the global power
consumption for computing is expected to increase in the
upcoming years.

Consequently, research on data center power consumption
has gained considerable attention since the publication of
initial statistics on its energy usage, which illuminated the
rapidly increasing demands of servers worldwide [2]. A more
recent survey shows that the growing demands of these data
centers are not in proportion with their efficiency despite the
technological innovations [3]. In other words, the rate at which
the power consumption increases across the generations of data
centers are higher than the rate of growth in their efficiency.
Within the data center, almost 86% of the total power con-
sumption is equally shared between the cooling system and
servers [6], which makes the power consumption of compute
nodes an important issue that needs to be addressed.

In the context of reducing compute node power consump-
tion, various methods have been proposed that can be broadly
classified into two categories: those that focus on minimizing
power dissipation and those that focus on minimizing power
supply. These approaches aim to reduce the overall energy
consumption of compute nodes, while maintaining their per-
formance and functionality. The former is strictly a Very Large
Scale Integration (VLSI) design problem, while the latter is a
cyber-physical systems problem, which can be dealt with using
efficient power management algorithms (i.e., control system
design), which is the focus of this paper.

Specifically, we design a method to reduce the consumed
power without any noticeable impact on the execution time of
a workload. Through our work, we achieve regulation of the
average supplied power using a reinforcement learning (RL)
agent, trained using a mathematical model which relates the
progress made by the application towards the completion of
its scientific-goal to the power cap (pcap) of RAPL actuators.
Additionally, the goal is to not let the execution time vary
significantly when compared to that with maximum power
execution.

To that end, we present a real-time, dynamic power manage-
ment scheme that is based on observing both time-aware and
power-aware variables as a solution to the power management
problem of the high performance compute nodes. In our work,
the RL agent observes the progress made by the application

https://orcid.org/0000-0001-6639-7432
https://orcid.org/0000-0002-1029-0684
https://orcid.org/0000-0002-7706-7102

towards completing its scientifc goal at each instant and makes
a decision on the power requirement for the next time step
based on this observation. The action, which is based on
this decision, is taken by setting the running average power
limit (RAPL) power caps at the computed value. RAPL is an
interface available on modern Intel processors to monitor and
control the energy consumption of various power domains.
Our approach is incorporated in the Argo Node Resource
Management (NRM) stack [7].

The key contributions of this paper are the following:

• A novel RL-based algorithm that relies on the system
model for training.

• An RL-based architecture employing the trained model
to control the compute node within a desired operational
region, while utilizing real-time progress measurements.

• An implementation of the algorithm with an open-source
repository for researchers to test and extend the results.

The remainder of this paper is structured as follows: In
Section II, we review existing algorithms in power and perfor-
mance optimization. Section III presents the necessary back-
ground for this paper, including the RL algorithm, hardware
and software stacks, and packages used in the experiments.
Section IV outlines the proposed algorithm and workflow
in the context of compute nodes. In Section V, we present
the experimental design and implementation, along with the
results and analysis. Finally, Section VI provides conclusions
including a brief summary, the impact of this work and future
opportunities.

II. RELATED WORK

Prior methods for regulating the performance on HPC nodes
can be classified either as a Power-aware scheme [8], [9] or
as a Time-aware scheme [10], [11]. A power-aware scheme
is designed with the primary objective of minimizing power
consumption while still achieving acceptable performance
levels. The main focus of this scheme is to optimize energy
usage and reduce power consumption in computing systems.
Power-aware schemes may employ techniques such as dy-
namic voltage and frequency scaling (DVFS), power capping,
power gating, and other power management methods to control
and regulate power usage based on workload and system
conditions. The goal is to maximize energy efficiency and
reduce the overall carbon footprint of the computing system.
Time-Aware Scheme on the other hand, prioritizes meeting
specific time or performance requirements, often associated
with critical real-time or time-sensitive applications. The main
objective of a time-aware scheme is to ensure that tasks or
processes are completed within predefined time constraints or
deadlines. In time-aware schemes, performance and response
time take precedence over power efficiency. These schemes
may use techniques like aggressive clock frequency scaling,
parallelism, or task prioritization to meet the time requirements
of critical applications. This section provides an overview of
some of these methods which also explains why there is a
growing demand for machine learning based methods for the

power and performance control that has lead to the proposed
work.

Our prior work [12] researched software approaches for
power optimization using duty cycle, voltage and frequency
scaling, wherein we used machine learning techniques to
model the application performance and hardware character-
istics, and use these models to guide the placement decisions.
But, the choice of method highly depended on the hardware
under consideration. Similarly, Jung et al. [13] proposes a
supervised learning based power management for multi-core
processors. However, such algorithms are not always reliable
due to the need for training data prior to the implementation
of software-based optimization.

On the other hand, methods that deal with system archi-
tecture that set the input power based on the system require-
ments converges faster. For example, a RAPL-based scheme
supports a variety of algorithms that relies on hardware-based
control for power capping on Intel processors [14]. But the
automation/feedback required for the processor to determine
the power requirements based on the application it runs is
not detailed in the paper. Similarly Raghavendra et al. [15]
utilizes a controller to stop the supplied power that is being
delivered to the subsystems, by detecting the no-load zones in
the application during its execution. Utilizing the technique,
they are able to regulate the power to finer granularities. But,
the efficiency of detecting the workload characteristics is not
at the best, since the research focuses only on the hardware
centric approach which is the main contribution of the paper.

Zhang et al. [16] later came up with a hybrid method,
combining software and hardware based methods to control
the power supply, which showed significant improvement over
the other methods. The authors combined the efficiency of
the software-based approaches like DVFS, Task Scheduling
etc. and the timeliness of the hardware approaches like Power
Gating, Voltage regulators etc. together by reducing the time
it takes to implement a power cap on the RAPL sensor from
the moment its value is set. But a workload-based adaptive
control of power was not considered here. Petoumenos et al.
[17], through their research give a comparative analysis of the
software, hardware and hybrid approaches towards the power
optimization in compute nodes.

Cerf et al. in her recent research [18] proposed a con-
trol theoretical approach to understand the possible operating
regions of a compute node at which the performance decay
is minimized under a reduced power supply. A classical
proportional-integral-derivative (PID) controller was designed
to impose power cap (PCAP) for RAPL actuators on an
Intel(R) Xeon(R) Gold 6126 CPU by using performance
feedback from the compute nodes [19]. The RAPL actuators
comprising a control knob or the PCAP knob and a time-
window knob were used to regulate the average power given
between two sampling intervals to a compute node. A math-
ematical model formulated using static characterization was
used for the design of the controller. The controller was shown
to be working for the compute nodes by making it track a
user-computed set-point for the desired performance. While an

adaptive controller [20] addressed model inaccuracies, reliance
on a user-defined set point calls for an automated approach.

Considering the limitations in prior work, we emphasize
the design of an optimal controller by solving the underlying
power and performance optimization problem. We propose
a hybrid approach for determining the best operating power
cap for a compute node by relying on the instantaneous
performance analysis that is obtained using the state-of-the-
art algorithms.

III. BACKGROUND

To make the paper self-contained, this section provides the
necessary background on the concepts and technologies used.

A. Reinforcement Learning

Reinforcement Learning (RL) iteratively improves a se-
quence of actions or strategy through continuous interactions
with the environment over a finite or infinite amount of time
traversed using discrete time steps. In this work we use an RL
agent to learn an optimal control policy by constantly gener-
ating an action and evaluating it using a mathematical model
that describes the relation between power cap and progress
made by the compute node while running an application. The
RL problem can be mathematically formulated as a Markov
Decision Process (MDP), where the agent interacts with an
environment that is modeled as a set of states, actions, and
rewards. At each time step, the agent observes the current
state, selects an action based on a policy, and receives a reward
from the environment. The goal of the agent is to learn a policy
that maximizes the expected cumulative reward over time. In
this paper we use a model-based algorithm by employing a
Proximal Policy Optimization (PPO) [21] agent to learn the
state transition and the reward functions, thereby learning the
policy.

B. Performance Measurement

Instantaneous measurement of the controlled variable is
an important aspect of feedback control problems. The RL
algorithm for maximizing performance under a controlled
power cap being an optimization problem, also requires the
measurement of instantaneous performance. During the mea-
surement, care must be taken that it does not interfere with the
overall working and thereby the performance of the system.
Therefore, we use a lightweight instrumentation library [19]
and follow the instrumentation steps outlined in [18]. We for-
mally re-define the progress measurement equation introduced
in the paper [19] considering the number of messages received
between two sampling instants. Therefore in this paper the
progress at the time instant ti is given by:

progress(ti) = median
∀k,tk∈[ti−1,ti]

(
N

tk − tk−1

)
. (1)

where N is the number of messages received between the time
instants tk and tk−1.

C. Intel RAPL

The running average power limit (RAPL) is an interface
available with modern Intel processors for power monitoring
and controlling making it unavoidable in energy efficient
computing. It also allows users to specify a power cap on
available hardware domains using model-specific registers or
the associated Linux sysfs subsystem. The RAPL interface
uses two knobs, the power-limit knob and a time window
knob to supply the average power for a user-defined period of
time. The internal controller then guarantees that the average
power over the time window is maintained. This mechanism
also offers sensors through the same interface to measure the
total energy consumed since the processor was turned on.
Consequently, RAPL can be used for both measuring and
limiting power usage [22].

IV. METHODOLOGY

This section describes details of our model-based reinforce-
ment learning (RL) which relies on a mathematical model
representing the relation between the progress and the power
cap (PCAP) in a compute node for training the RL agent. In
our previous work [18], where the performance of a compute
node under a given application was controlled using a suitable
PID controller running alongside the application, itself utilized
all the available cores of the Skylake processor. However,
a similar approach is not possible in the current work for
training the RL agent because of the time and computational
complexity involved. Therefore, we rely on the mathematical
model for training the RL agent.

Figure 1 depicts our methodology while comparing it with
the steps involved in the design of the PI controller in our
prior work [18]. The processes involved in the two approaches
beginning from the formulation of problem statement and
extending till the evaluation are shown in the block diagram
in Figure 1. It can be observed that the initial problem
statement, the steps leading to the control formulation, and
the system analysis are same in both the approaches. But,
when it comes to the controller block, the PI controller relies
on standard tuning methods from the classical control theory
to determine its control gains, (i.e tuning the proportional,
integral and derivative constants, Kp,Kd and Ki). In contrast,
the RL method uses an iterative, policy improvement and
policy update process by using an actor-critic network. It
is only in this stage of the controller design that the two
algorithms take different routes in the implementation. The
rest of this section details the steps used in our approach, i.e.,
the branch shown in red color.

A. Problem Definition

The first step is to define the objectives and the constraints
involved in the optimization problem. Our objective is to
maximize performance within a given power cap (PCAP)
constraint, while taking into account the relationship between
progress and PCAP as determined by the node dynamics. In
other words, we aim to improve the execution time of the
application while still using the minimum allowed energy. A

Problem Statement

Control Formulation

System Analysis

Model Design
and Control

RL agent
training and
control

Evaluation

Fig. 1. A pictorial representation showing the differences in methodologies
implementing a classical control and an RL based control. The RL method
discussed in this paper is colored in red.

simple way of ensuring this behavior is by making sure that the
computational progress is at its peak under the given PCAP.

B. Mathematical modeling and MDP identification

Given that the current progress of our problem is dependent
on both the previous progress and the current power cap, it
is expected that the node dynamics follow the characteristics
of a Markov Decision Process (MDP). Thus, to effectively
apply a reinforcement learning to a problem, it is crucial to
identify the MDP tuple (S,A,P, r, γ) representing the state
space, a set of actions available to an agent, the unknown
transition kernel, the reward function and the discount factor,
respectively. In addition to identifying the MDP, we also
need to derive a mathematical model that represents the node
dynamics so as to train the RL agent. To support the claim that
the node dynamics have MDP characteristics and to derive the
mathematical model, we use a static characterization approach
and utilize line-fitting algorithms from SciPy [23].

The experiment, which is part of the model building process,
begins by collecting data points in the form of input-output
pairs, where the input (i.e., PCAP) is provided at certain pre-
defined instances and the output (i.e., progress made by the
compute node on the workload) is calculated using Equa-
tion (1). These data points correspond to an entire benchmark
execution where a constant PCAP is applied, and the progress
signal is averaged. To model the time-averaged relationship
between power cap and progress, we consider only stabilized
situations of the progress value generated using PCAPs al-
lowed by the RAPL actuators. At least 20 experiments are
run for each compute node to generate enough data points.
Based on these experiments, a static model is obtained by
linking the time-stabilized power cap to the progress using
line-fitting algorithms. We observed that the PCAP-progress
relation follows an exponential relationship, as shown by
Equation (2):

progress =KL(1− e−α(a.PCAP+b−β)), (2)

where a and b parameters represent RAPL actuator accuracy of
the node (slope and offset, respectively). Therefore, the actual
power applied on a node can be approximated as: a.PCAP+b
which is also the measured power. α and β characterize the

benchmark-dependent power-to-progress profile and KL is the
linear gain and is both benchmark- and node-specific. The ef-
fective values of the fitting coefficients given by α, β, a, b,KL

and τ are obtained using the above mentioned steps, where
the line fitting problem follows a non-linear least squares
optimization. The linear characterization of dynamics can be
then computed using least square optimization [18] and is
given as

progressL(ti+1) =
KL∆ti
∆ti + τ

.PCAPL(ti)

+
τ

∆ti + τ
progressL(ti),

(3)

where ∆ti = ti+1− ti is the control interval and τ is the time
constant. The values of ∆ti and τ are chosen as 1s and 1

3 s,
respectively, for the experiments. We can use either of these
models for training.

After defining the Markov Decision Process (MDP), we
proceed to assign distinct characters to each role in the MDP,
which include the state, action, and observation spaces that
were previously established. In this study, the current state,
denoted as s

′ ∈ S, is represented by the progress value at
time t, progresst. On the other hand, the action, denoted as
a ∈ A, taken by the agent, is determined by the PCAP value
at time t based on the observation progresst−1 (s ∈ S), which
represents the progress value at the time t− 1.

C. Reward function
We now explain how the reward function is chosen to

facilitate fast and accurate learning. The reward at a given
time t reflects the quality of the control action applied to the
system at that moment in time indicating how well the action
helped achieve the goal or optimize the system’s performance.
The instantaneous reward, i.e., reward at a moment in time,
is calculated by designing an appropriate reward function that
maps the state-action space into the set of real numbers R.
The choice of an appropriate reward function depends on how
effectively it can discriminate the changes happening in the
environment when a control action is applied. As explained in
the Subsection IV-A, our aim is to maximize the performance
under a given PCAP. By negating the power consumption
measured at time t during each of the sampling instance, we
can easily take care of the power reduction i.e., R(s, a) =
−measured power(t). This reward function penalizes an
action that can lead to an increased power consumption, but
at the same time ignores its effect on performance.

An alternate choice could be R(s, a) =
−measured power(t) + progress(t), however, this
is not a good choice for a reward function since it fails to
record the trends in the power and performance. For example:
A higher progress at a lower PCAP cannot be differentiated
from another that may return a lower progress at a higher
PCAP. Therefore, a suitable choice of reward function that
can differentiate these modes of power and performance is
R(s, a) = progress

measured power .
To give extra emphasis on the reduction of power, we

decided to consider the following reward function consisting

of a linear combination of the total measured power and the
instantaneous progress to PCAP ratio:

R(t) = −c1 ∗ PCAP︸ ︷︷ ︸
minimize consumed power

+ c2 ∗
progress(t)

measured power(t)︸ ︷︷ ︸
maximize performance per watt

(4)

where c1 and c2 are scaling factors which we will determine
by observing a large number of training performances. In
the mathematical model developed using the static charac-
terization in Equation 2, the measured power is computed
as measured power = e−α(a.PCAP+b−β) which we will
be using for the learning process. We tested our algorithm
with a variety of values for c1 and c2 and observed that more
than one value exists as a valid candidate for c1 and c2. One
interesting combination which we used for the training and
testing is c1 = 0 and c2 = 4.44 which focused only on the
maximization of the performance under the given power cap.
Therefore, under the present simulation conditions, a reward
function of R(s, a) = progress(t)

measured power(t) is expected to be
equally good when compared to an enhanced power reducing
reward function given by Equation 4.

D. RL Agent Training

The RL system is trained using the mathematical model
given by the Equation 3 which is linear in nature. Here,
we follow a model-based training approach that is used in
a variety of applications [24]. A model-based training has the
advantage of not risking the safety and stability of hardware
while evaluating a variety of control actions. Therefore, while
training, we used the entropy term of the PPO agent to enable
exploration. This helped in learning an optimal policy faster.
The flow diagram in Figure 2 shows the general idea employed
under the training using the mathematical model.

state(tk+1) Mathematical Model state(tk)

Reward Function (R(tk+1))

PPO RL agent

Environment

action(tk)

reward

Fig. 2. Training of the RL-agent as described in the paper. The RL-agent
receives a reward, for every action it takes, calculated using the values of state
variables obtained from the mathematical model.

V. EMPIRICAL EVALUATION OF REINFORCEMENT
LEARNING APPROACH

This section presents details of evaluating our approach for
its efficacy in meeting its objectives. First we present the
criteria using which we evaluate the proposed method for
controlling a data center compute node. We then present the
results and our analysis.

A. Evaluation Strategy

We compare here the total time taken for executing the
workload and the total energy consumption during that period,
with two standard operating conditions of a data center com-
pute node. The evaluation consists of the following analysis
based on which we draw conclusions about the efficiency
(percentage value of increase or decrease in the execution time
and power consumption) of the proposed method:

• A comparative analysis of the proposed RL-based con-
trol method with the PI controller proposed in prior
work [18],

• A comparative analysis of the RL-based control with the
efficiency of the system with minimum and maximum
power caps,

• A repeatability analysis of the experiment on the same
compute node, and

• A repeatability analysis involving different compute
nodes.

For the comparative analysis with the PI controller, we test
our RL agents that are trained using a variety of reward
functions and generated using varying values of c1 and c2
while running the benchmark application. Similarly we use the
optimal controller among these trained models to control the
PCAP, while running the benchmark application, and compare
it against the maximum and minimum PCAP runs. We repeat
this experiment 10 different times on a node to analyze
the statistics associated with the results. We also test the
algorithm on different nodes and analyze the statistics for the
repeatability of the results on varying hardware. Through these
evaluations, we also comment on the execution time, total
power consumed, and the related statistics for each experiment.

B. Implementation of RL Agent and Experimental Platform

The code for the training and testing the algorithms are
written in Python3 with the required support packages in-
stalled on the Nix-environment manager [25]. [26] introduces
a Python3-based software package called stable-baselines-3
(SB-3) that give users a leverage to code RL algorithms
seamlessly. With the support of PyTorch [27], we developed an
easy to implement architecture for all the standard RL methods
shown in the literature.

The RL agent resides inside the the Argo Node Resource
Manager (NRM) stack [7]. Argo NRM is an infrastructure
developed as part of the U.S. Department of Energy Exascale
Computing Project called Argo, for the design of node-level
resource management policies. It provides users an easy-to-
use and a unified interface (through Unix domain sockets), to
the various monitoring and resource control knobs available
on a compute node (e.g., RAPL, performance counters).

All experiments in this paper were performed on
Skylake compute nodes using the STREAM benchmark.
STREAM [28] is a standard application benchmark com-
prising a set of simple, portable programs that can be used
to measure memory bandwidth on a variety of computer
systems. The benchmark measures the memory bandwidth for

four different types of operations: copy, scale, add, and triad.
STREAM is chosen as it is representative of memory-bound
phases of applications and shows a stable behavior. STREAM
is also easy to modify into an iterative application: its four
kernels are ran a configurable number of times in a loop, with
a heartbeat being reported to the NRM each time the loop
completes, i.e., after one run of the four kernels.

All four tests are performed on arrays of floating-point
numbers and the results are reported in terms of the achieved
memory bandwidth (in bytes/second). The problem size is set
to 33,554,432 with 10,000 iterations for the experiment during
its evaluation. In the context of the STREAM benchmark, the
problem size refers to the amount of data in bytes that will be
used to execute the benchmark. The problem size can be varied
to measure the memory bandwidth at different data set sizes.
The iterations refer to the number of times that the benchmark
will be executed for a given problem size, and the results of the
iterations are averaged to reduce the impact of measurement
variability. Typically, a large number of iterations are used to
obtain accurate and consistent results.

Note that availability of RAPL actuators and sensors on the
compute nodes are important for our experiments. Moreover,
each node should have a reasonable range of operation region
under the given power cap before it attains saturation so
that a number of them can execute the STREAM benchmark
seamlessly. We use Chameleon Cloud [29], a server facility
made available for researchers to perform experiments that
requires low-level access to hardware. Hosted on a variety
of locations spanning across the country, it offers hardware
components of various specifications. We use the Skylake
nodes from the available servers for our experiments that use
an Intel Xeon Gold 6126 processor with 12 dual threaded
cores. Above all, it belongs to the modern series of the Intel
processors with RAPL actuators and sensors.

C. Experiment Details

For the first part of the experiment involving the static
characterization, described in the Subsection IV-B, we used
a Chameleon Cloud node to run the STREAM benchmark
while the daemon collected the progress measurement. We
actuated the RAPL power knobs with test PCAP values in the
form of step signals. A total of 17 step signals were given
and the progress values were calculated using Equation 1 and
recorded once the steady state was attained. We then collected
these datasets consisting of the PCAP-progress pairs and used
the Scipy line fitting algorithm to obtain the best fit equation.
Figure 3 depicts the non-linear and linear representations
of data points and the curve that was obtained using static
characterization, respectively. The parameters obtained after
the line fitting are given in Table I.

In the next part of the experiment, the obtained parameters
were used in the mathematical model shown in Equation 2 for
generating the next state (progress) in response to an action
(PCAP). We employed a PPO-RL agent, to generate a policy
and execute it on the mathematical model thereby generating
the next state followed by the corresponding reward given

40 60 80 100 120
Powercap [W]

0
20
40
60
80

Pr
og

re
ss

 [H
z] cluster: - measures

cluster: - model

0.7 0.6 0.5 0.4 0.3 0.2 0.1
Linearized Powercap [unitless]

30

20

10

Lin
ea

riz
ed

 P
ro

gr
es

s [
Hz

]

cluster: - measures
cluster: - model

Fig. 3. Mathematical model of an HPC node representing the non-linear
and the corresponding linear relations existing between PCAP and progress,
obtained using static characterization, showing the data points (red ’×’) and
the best fit curve (black ’−’).

Description Notation Unit Value

RAPL slope a [1] 0.95
RAPL offset b [W] 0.15

α [W-1] 0.041
power offset β [W] 24.3
linear gain KL [Hz] 47.9
time constant τ [s] 1/3

TABLE I
MODEL PARAMETERS OBTAINED USING STATIC CHARACTERIZATION OF

AN INTEL XEON GOLD 6126 PROCESSOR.

by Equation 4. At this point, we would like to bring to the
reader’s attention that we are not running the application nor
the NRM daemon while using the mathematical model. We can
implement this training algorithm on any standard processor
and do not require any specific hardware. Therefore a simple
Python code deploying the PPO-RL agent evaluated the policy,
followed by periodic updates which assured its convergence
to an optimal value.

For determining the best reward function that could generate
an optimal policy, we performed the training using different
reward functions, obtained by varying the c1 and c2 in the
Equation 4. We then collected all the models and tested it
on the mathematical model to determine its impact on the
theoretical performance and power, and determined the region
of interest. We also tested these models on the hardware
running the application and daemon to compare it against the
PI controller.

Having determined the optimal reward function, we used
the optimal model on the hardware for testing followed by
evaluation. For the testing and evaluation, we reintroduced the
hardware and the workload to execute, with the help of NRM.
This time, the trained RL-agent provided the PCAP for con-
trolling the power knob of the RAPL actuators. Following this,
the corresponding progress values were measured and fed back
into to the RL network to compute the next PCAP. This cycle

is repeated till the entire work load is finished execution. We
repeated the experiment for a variety of scenarios described
in the SubsectionV-A.

D. Empirical Results and Discussion

In this section we will explain the results obtained after
following the experiment design described in the previous
section. We will also perform the evaluation of the algorithm
followed by the interpretation of the results obtained.

Firstly for choosing an appropriate reward function we
trained the RL-agent using the reward function given by the
equation (4) with varying values of c1 and c2 followed by
testing on the mathematical model for its performance. The
theoretical values of performance (execution time) and the
total energy consumed during the execution, were obtained
using the control generated by each of the agents and are as
shown in the Figure 4. By using a series of values for c1 and c2
starting from 0 followed by increments of 0.1, till 10, we were
able to observe the variations in the performance and power
for each of the designed reward. As expected we obtained a
combination of values for c1 and c2 that yielded respective
results ranging from the fastest to the slowest performance as
shown in the figures 4. Observing the figure we can see that
there is a point in the maximum curvature region (marked in
blue circle) in figure 4 that can be considered as an ideal region
to look for a candidate reward function. This point corresponds
to the minimum energy consumption and the maximum per-
formance. Note that, there were a couple of ideal candidates
for the reward function that repeated across multiple execu-
tion of this experiment, for example, (c1=1.052,c2=2.22) and
(c1=0,c2=4.44) gave the same responses. We chose the model,
that was obtained after training using the reward function,
R(t) = −1.052PCAP (t)+2.22 progress(t)

measured power(t) , as the RL-
agent to control the HPC nodes during the testing phase.

20 22 24 26 28
Energy consumption [kJ]

300

400

500

600

700

Ex
ec

ut
io

n
tim

e
[s

]

Fig. 4. A Pareto of execution time vs energy consumed, generated by varying
the RL-agents trained with different reward functions. The x-axis shows the
total energy consumed during the execution, and the time of execution is
plotted on the y-axis. The ideal characteristics are inside the blue circle.

E. Analysis of Results

Before we proceeded with the analysis and evaluation of
the proposed optimal controller for the PCAP, we needed to
verify its performance by comparing it against the existing
PI controller. For that, we needed to run both the algorithms
on the same machine. We first executed the PI controller

on the HPC node with varying set-points as shown in the
Figure 5. The pareto of points with gradients of colors ranging
from yellow to blue depicts the result obtained for the PI
controller with varying setpoints. The setpoint was specified
using the parameter ϵ, representing the allowed tolerance in the
maximum performance value. The ϵ value was varied from 0
to 0.6 randomly, during the experiments using PI controller.
The shortest execution time of 240s (corresponding to faster
execution) was obtained at an energy consumption of 36kJ at
an ϵ value of 0.1. The setpoint value is expected to change
based on the hardware being tested, whose dependency on the
controller is being removed while using an RL controller. We
then tested the trained RL controllers on the same hardware
running the application and created a similar pareto of points.
In the Figure 5, the red points represent the response of the
HPC node controlled using the trained RL-agent. We observed
that the optimal region consisted of points vary close to the
best performance obtained using the PI controller. It was
observed that the R(t) proposed in the previous subsection
fell within a closer range of the best performance.

35 40 45 50 55
Energy consumption [kJ]

250

300

350

400

450

500
Ex

ec
ut

io
n

tim
e

[s
]

(6.7, 5.6)

(8.9, 6.7)

(3.3, 3.3)

(6.7, 4.4)

(10.0, 5.6)

(6.7, 6.7)

(4.4, 7.8)
(5.6, 7.8)

(7.8, 5.6)

(10.0, 6.7)

(7.8, 3.3)

(10.0, 7.8)

(6.7, 3.3)

(4.4, 5.6)

(3.3, 8.9)

(3.3, 2.2)

(7.8, 6.7)

(0.0, 0.0)

(6.7, 7.8)(8.9, 8.9)

(2.2, 5.6)

(8.9, 1.1)(5.6, 1.1)

(7.8, 10.0)

(4.4, 10.0)

(5.6, 2.2)(7.8, 0.0)

(0.0, 1.1)

(6.7, 0.0)(4.4, 0.0)

(5.6, 3.3)

(8.9, 3.3)

(0.0, 10.0)

(10.0, 1.1)(5.6, 6.7)(10.0, 0.0)(4.4, 1.1)(7.8, 2.2)(8.9, 0.0)(10.0, 2.2)(7.8, 1.1)(6.7, 1.1)(1.1, 0.0)(2.2, 1.1)(3.3, 0.0)(6.7, 2.2)
(5.6, 0.0)(2.2, 0.0)

(10.0, 10.0)

(10.0, 3.3)

(8.9, 2.2)

(10.0, 4.4)(6.7, 8.9)

(1.1, 8.9)

(5.6, 4.4)(8.9, 10.0)
(5.6, 5.6)
(5.6, 10.0)

(8.9, 4.4)

(2.2, 6.7)

(4.4, 6.7)
(10.0, 8.9)(0.0, 3.3)

(1.1, 7.8)

(8.9, 7.8)

(2.2, 2.2)

(2.2, 3.3)

(7.8, 4.4)

(4.4, 2.2)

(2.2, 7.8)

(6.7, 10.0)
(0.0, 4.4)

(3.3, 1.1)

(4.4, 4.4)(4.4, 3.3)

(1.1, 1.1)

(1.1, 2.2)

(0.0, 5.6)

(8.9, 5.6)

(7.8, 7.8)

(3.3, 7.8)
(1.1, 3.3)

(2.2, 4.4)

(0.0, 7.8)

(1.1, 4.4)

(3.3, 6.7)

(1.1, 5.6)

(0.0, 2.2)

(0.0, 6.7)(7.8, 8.9)(4.4, 8.9)(2.2, 8.9)
(2.2, 10.0)

(3.3, 5.6)(1.1, 6.7)
(3.3, 4.4)(5.6, 8.9)(3.3, 10.0)

(0.0, 8.9)

(1.1, 10.0)

RL-Controller
PI-Controller

0.1

0.2

0.3

0.4

0.5

0.6

De
gr

ad
at

io
n

 [u
ni

tle
ss

] f
or

 v
ar

yi
ng

 se
tp

oi
nt

s.
Fig. 5. Plot showing the comparison of PI controller with varying setpoints
(values for 1 − ϵ) and RL controller for varying reward functions. The PI
control objective is given as a degradation factor ϵ, that is, the tolerable loss
of performance

Through these comparisons we were able to justify the
use of a trained RL-agent as an optimal controller aimed
to minimize the power consumption. Using the proposed RL
controller, we were able to regulate the HPC node performance
around those regions of operation, where a PI controller was
regulating the performance, given a user-defined set-point. We
also were able to excite the HPC node at some other regions
where a slower response was obtained but at a very low energy
consumption. We will now look for points where optimal
performance and power consumption was recorded and will

check for the repeatability of the experiments using the same
hardware as well as different hardware.

We used the RL-agent trained using the reward function
chosen previously, for the remaining part of the experiment
consisting of:

• Repeatability on the same node and
• Repeatability on different nodes.
Within each of these analysis, we considered two different

scenarios to compare with the performance of the proposed
method, namely:

• Maximum PCAP: allowing the node to utilize the maxi-
mum allowed capabilities of the system,

• Minimum PCAP: limiting the performance, by allowing
only the minimum power at the actuators.

For the analysis of the repeatability of the experiment
on the same node, we conducted a total of 30 executions
of the experiment with RL controller being used for 10 of
the executions. In the remaining 20 executions we used the
maximum allowed and minimum allowed values for the PCAP
to record the statistics. We didn’t consider the PI controller
for the comparison here, since we are only evaluating the
repeatability of the proposed method. We then observed the
statistics associated with each set of executions and the values
are tabulated. Figure 6 depicts the results of the experiment
with the execution time plotted against the energy consumed
during the each of the experiments. Figure 7 shows the values
of instantaneous PCAPs sensed during each time step, by the
RAPL sensors for three different executions using maximum,
minimum and optimal PCAP respectively. In Figure 6,

47.5 50.0 52.5 55.0 57.5 60.0 62.5
Energy consumption [kJ]

250

300

350

400

450

500

Ex
ec

ut
io

n
tim

e
[s

]

MEAN operating region for minimumPCAP
minimumPCAP
MEAN operating region for optimalPCAP
optimalPCAP
MEAN operating region for maximumPCAP
maximumPCAP

Fig. 6. Comparison of the execution-time and the energy consumed during
the execution of the experiments performed on the same hardware employing
three different methods. The statistics of the executions are shown in the table
II

0 100 200 300 400 500
Time [s]

40

60

80

100

120

M
ea

su
re

d
po

we
r [

RA
PL

 se
ns

or
]

maximum PCAPs
optimal PCAPs
minimum PCAPs

Fig. 7. Instantaneous power vs time-steps plots for a single execution of the
experiment using optimal, maximum and minimum PCAP controllers.

ensuring the maximum PCAP for the RAPL actuators, that
put no limit on the amount of energy drawn into the system,
the workload execution was completed in 245s. But when we
look at the total energy consumed over the period it was in
the range of an average value of 60.97kJ. On the other hand,
enforcing the minimum PCAP on RAPL actuators, the power
consumption was minimal, i.e in the range of an average value
of 47.49kJ of energy, but compromising on the total execution
time which lasted for 501.14s. On the other hand, the RL
based controller was able to limit the power consumption and
comparable execution time. It was observed that the average
power consumption, over 10 experiments using the optimal
PCAP, was 48.23kJ, while the average execution time was
261.19s. This shows a reduction of 21% on the consumed
power, while the performance was compromised only by 6.5%.
The statistics of the experiment are given in the table II

Minimal Maximal Optimal

µ Execution Time [s] 501.14 245.23 261.19.
σ Execution Time 26.20.21 3.6 5.89
µ Energy Consumption [kJ] 47.49 60.97 48.23
σ Energy Consumption 1.98 0.77 0.744

TABLE II
STATISTICS OF REPEATABILITY USING THE SAME NODE OVER 10

EXECUTIONS. µ AND σ DEPICT MEAN AND STANDARD DEVIATION
RESPECTIVELY.

For the next part, we performed a total of 21 exections
consisting of 7 sets with 3 executions each with maximum,
minimum and optimal PCAP. Each set was exectuted on
different hardware. We made the reservation for 7 nodes
from the Chameleon Cloud using a single lease in-order to
assure diversity in hardware. The results of the execution was

then gathered for analysis of its statistics. Figure 8 shows

40 45 50 55 60
Energy consumption [kJ]

250

300

350

400

450

500

Ex
ec

ut
io

n
tim

e
[s

]

MEAN operating region for minimum PCAP
minimum PCAP
MEAN operating region for optimal PCAP
optimal PCAP
MEAN operating region for maximum PCAP
maximum PCAP

Fig. 8. Comparison of the execution-time and the energy consumed during
the execution of experiments, performed on different nodes using the three
methods. The statistics of the executions are shown in the table III

the obtained results of the experiment. It was observed that
the proposed RL based controller was able to bring down
the energy consumption by 19.7% at a cost of 7.3% in
performance. It was also observed that the variance among
each set of the experiments have gone high due to the changes
in hardware, but in effect the optimal controller performed
with the minimum variance. The related statistics are presented
in the table III. Through the repeatability experiments we were

Minimal Maximal Optimal

µ Execution Time [s] 459.14 242.85 260.28
σ Execution Time 40.21 8.25 12.03
µ Energy Consumption [kJ] 43.3 59.52 47.78
σ Energy Consumption 3.78 3.77 2.22

TABLE III
STATISTICS OF REPEATABILITY OVER 5 EXECUTIONS ON DIFFERENT HPC

NODES. µ AND σ HAVE THE USUAL MEANING.

able to prove the reliability of the proposed approach for gen-
erating an optimal control for HPC nodes. We were also able
to verify that the energy consumption reduction is consistent
throughout its execution irrespective of the hardware.

VI. CONCLUSION

This paper addresses the problem of managing power con-
sumption in heterogeneous data center compute nodes by
focusing on the potential of dynamically adjusting power
across compute elements to save energy with almost no
impact on performance. Our approach involves model-based
reinforcement learning that learns using a mathematical model,
which is generated using static characterization of a specific

hardware node running a standard application benchmark. The
control of the hardware, then uses the trained RL agent to
ensure optimal performance. Experimental validation shows
promising results for systems running a memory-bound bench-
mark. The repeatability of results showed a standard deviation
of 5.89 with a mean energy consumption of 48.23 kJ during
261.19s of mean execution time. These results indicate that
the RL-based approach can serve as an alternative to the PI
controllers used in our past experiments in order to remove the
dependency on operational setpoints. The approach presented
in this paper is most suitable for cloud providers and high
performance compute node administrators who seek solutions
to reduce power consumption of their server resources yet
not impact application performance. In our future work, we
aim to resolve the dependency of the proposed work on the
mathematical model for training. We also seek to design a
generalized RL-based controller, controlling PCAPs on nodes
executing a variety of applications.

ACKNOWLEDGMENTS

Results presented in this paper were obtained using the
Chameleon testbed supported by the National Science Foun-
dation. Argonne National Laboratory’s work was supported
by the U.S. Department of Energy, Office of Science, Ad-
vanced Scientific Computer Research, under Contract DE-
AC02-06CH11357. This research was supported by the Exas-
cale Computing Project (17-SC-20-SC), a collaborative effort
of the U.S. Department of Energy Office of Science and the
National Nuclear Security Administration. The dataset and
the codes used for the entire experiment, including the static
characterization, training and testing, are hosted on our GitHub
repository. We also provide readers with complete access
to our Chameleon Cloud image, which will enable them to
reproduce the results.

REFERENCES

[1] K. Darrow and B. A. Hedman, Opportunities for combined heat and
power in data centers. ICF International Arlington, VA, 2009.

[2] J. Koomey et al., “Growth in data center electricity use 2005 to 2010,”
A report by Analytical Press, completed at the request of The New York
Times, vol. 9, no. 2011, p. 161, 2011.

[3] M. Koot and F. Wijnhoven, “Usage impact on data center electricity
needs: A system dynamic forecasting model,” Applied Energy, vol. 291,
p. 116798, 2021.

[4] J. Shalf, “The future of computing beyond moore’s law,” Philosophical
Transactions of the Royal Society A, vol. 378, no. 2166, p. 20190061,
2020.

[5] M. Dayarathna, Y. Wen, and R. Fan, “Data center energy consumption
modeling: A survey,” IEEE Communications surveys & tutorials, vol. 18,
no. 1, pp. 732–794, 2015.

[6] A. Shehabi, S. Smith, D. Sartor, R. Brown, M. Herrlin, J. Koomey,
E. Masanet, N. Horner, I. Azevedo, and W. Lintner, “United states data
center energy usage report. 2016,” DOI, vol. 10, p. 1372902, 2016.

[7] B. Pete, D. Nicolas, G. Rinku, I. Kamil, P. Swann, T. John, V. Brice,
and Y. Kazutomo, “Argo Node Resource Manager,” 2021.

[8] C.-h. Hsu and W.-c. Feng, “A power-aware run-time system for high-
performance computing,” in SC’05: Proceedings of the 2005 ACM/IEEE
Conference on Supercomputing, pp. 1–1, IEEE, 2005.

[9] T. Patki, D. K. Lowenthal, A. Sasidharan, M. Maiterth, B. L. Rountree,
M. Schulz, and B. R. De Supinski, “Practical resource management
in power-constrained, high performance computing,” in Proceedings of
the 24th international symposium on high-performance parallel and
distributed computing, pp. 121–132, 2015.

https://github.com/akhileshraj91/GENERALIZED_RL_ANL.git
https://github.com/akhileshraj91/GENERALIZED_RL_ANL.git
https://chi.tacc.chameleoncloud.org/ngdetails/OS::Glance::Image/f6974b54-93fc-4140-9163-7aae9fc3070d

[10] M. Sadrosadati, S. B. Ehsani, H. Falahati, R. Ausavarungnirun,
A. Tavakkol, M. Abaee, L. Orosa, Y. Wang, H. Sarbazi-Azad, and
O. Mutlu, “Itap: Idle-time-aware power management for gpu execu-
tion units,” ACM Transactions on Architecture and Code Optimization
(TACO), vol. 16, no. 1, pp. 1–26, 2019.

[11] M. Qiu, Z. Ming, J. Li, S. Liu, B. Wang, and Z. Lu, “Three-phase time-
aware energy minimization with dvfs and unrolling for chip multipro-
cessors,” Journal of Systems Architecture, vol. 58, no. 10, pp. 439–445,
2012.

[12] F. Caglar, S. Shekhar, and A. Gokhale, “iplace: An intelligent and
tunable power-and performance-aware virtual machine placement tech-
nique for cloud-based real-time applications,” in 2014 IEEE 17th Inter-
national Symposium on Object/Component/Service-Oriented Real-Time
Distributed Computing, pp. 48–55, IEEE, 2014.

[13] H. Jung and M. Pedram, “Supervised learning based power management
for multicore processors,” IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, vol. 29, no. 9, pp. 1395–1408,
2010.

[14] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le, “Rapl:
Memory power estimation and capping,” in 2010 ACM/IEEE Interna-
tional Symposium on Low-Power Electronics and Design (ISLPED),
pp. 189–194, IEEE, 2010.

[15] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and X. Zhu,
“No” power” struggles: coordinated multi-level power management for
the data center,” in Proceedings of the 13th international conference
on Architectural support for programming languages and operating
systems, pp. 48–59, 2008.

[16] H. Zhang and H. Hoffmann, “Maximizing performance under a power
cap: A comparison of hardware, software, and hybrid techniques,” ACM
SIGPLAN Notices, vol. 51, no. 4, pp. 545–559, 2016.

[17] P. Petoumenos, L. Mukhanov, Z. Wang, H. Leather, and D. S. Nikolopou-
los, “Power capping: What works, what does not,” in 2015 IEEE 21st
International Conference on Parallel and Distributed Systems (ICPADS),
pp. 525–534, IEEE, 2015.

[18] S. Cerf, R. Bleuse, V. Reis, S. Perarnau, and E. Rutten, “Sustaining
performance while reducing energy consumption: a control theory
approach,” in European Conference on Parallel Processing, pp. 334–
349, Springer, 2021.

[19] S. Ramesh, S. Perarnau, S. Bhalachandra, A. D. Malony, and P. Beck-
man, “Understanding the impact of dynamic power capping on appli-
cation progress,” in 2019 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pp. 793–804, IEEE, 2019.

[20] I. Hawila, S. Cerf, R. Bleuse, S. Perarnau, and E. Rutten, “Adaptive

Power Control for Sober High-Performance Computing,” in CCTA 2022
- 6th IEEE Conference on Control Technology and Applications, (Trieste,
Italy), pp. 1–8, IEEE, Aug. 2022.

[21] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[22] B. Rountree, D. H. Ahn, B. R. De Supinski, D. K. Lowenthal, and
M. Schulz, “Beyond dvfs: A first look at performance under a hardware-
enforced power bound,” in 2012 IEEE 26th International Parallel and
Distributed Processing Symposium Workshops & PhD Forum, pp. 947–
953, IEEE, 2012.

[23] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J.
van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J.
Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W.
Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henrik-
sen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro,
F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors, “SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python,” Nature
Methods, vol. 17, pp. 261–272, 2020.

[24] G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots,
and E. A. Theodorou, “Information theoretic mpc for model-based
reinforcement learning,” in 2017 IEEE International Conference on
Robotics and Automation (ICRA), pp. 1714–1721, IEEE, 2017.

[25] E. Dolstra and A. Löh, “Nixos: A purely functional linux distribution,”
in Proceedings of the 13th ACM SIGPLAN international conference on
Functional programming, pp. 367–378, 2008.

[26] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dor-
mann, “Stable-baselines3: Reliable reinforcement learning implementa-
tions,” Journal of Machine Learning Research, 2021.

[27] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances in
neural information processing systems, vol. 32, 2019.

[28] J. D. McCalpin, “A survey of memory bandwidth and machine balance in
current high performance computers,” Newsletter of the IEEE Technical
Committee on Computer Architecture (TCCA)(December 1995), 1997.

[29] K. Keahey, J. Anderson, Z. Zhen, P. Riteau, P. Ruth, D. Stanzione,
M. Cevik, J. Colleran, H. S. Gunawi, C. Hammock, J. Mambretti,
A. Barnes, F. Halbach, A. Rocha, and J. Stubbs, “Lessons learned from
the chameleon testbed,” in Proceedings of the 2020 USENIX Annual
Technical Conference (USENIX ATC ’20), USENIX Association, July
2020.

	Introduction
	Related Work
	Background
	Reinforcement Learning
	Performance Measurement
	Intel RAPL

	Methodology
	Problem Definition
	Mathematical modeling and MDP identification
	Reward function
	RL Agent Training

	Empirical Evaluation of Reinforcement Learning Approach
	Evaluation Strategy
	Implementation of RL Agent and Experimental Platform
	Experiment Details
	Empirical Results and Discussion
	Analysis of Results

	Conclusion
	References

