
This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of two U.S. Department of Energy organizations (Office of Science and the National Nuclear Security Administration) responsible for 
the planning and preparation of a capable exascale ecosystem, including software, applications, hardware, advanced system engineering and early testbed platforms, in support of the nation’s exascale computing imperative.

Argo: Then and Now

Argo improves or augments existing OS/R components for use in production HPC systems, providing portable, open source 
software that improves the performance and scalability and that provides increased functionality to exascale 
applications.

ANL: Pete Beckman (PI), Idriss Daoudi, Rinku Gupta, Kamil Iskra, John-Luke Navarro, Swann Perarnau, 
John Tramm, Brice Videau, Kazutomo Yoshii, 
LLNL: Maya Gokhale (co-PI), Eric Green, Keita Iwabuchi, Roger Pearce, Ivy Peng, Abhik Sarkar; 
Tapasya Patki (co-PI), Stephanie Brink, Aniruddha Marathe, Barry Rountree, Kathleen Shoga
University of Arizona: David Lowenthal and team

Developing vendor-neutral, open-source software for OS/R improvements

Part of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-POST-803567

AML
Overview
● A library for application-aware management of 

byte-addressable memory devices
○ Explicit placement and movement of data

● Designed as a collection of building blocks
○ Users can create custom memory 

management policies for allocation and 
placement of data across devices

● Designed for deep, heterogeneous memory 
systems, featuring NUMA, HBM, or GPU memory

Impact
● Improved performance of applications 

regarding memory usage on the complex 
compute nodes of exascale systems

● Improved performance portability of 
applications across exascale systems

Before ECP
● A proof-of-concept library then called DeepRAM
● Focus on multilevel DRAM hierarchy on CPU

○ Software-managed scratchpad in MCDRAM
● Exploration of different migration mechanisms

○ User-space, kernel-space, hardware
○ Asynchronous using dedicated CPU threads

PowerStack

NRM

Now
● Production-quality implementation
● Major refocus on GPUs, given the eventual 

architectures of first exascale systems
● Integration into ExaSMR’s XSBench
● Interface to build custom memory mapping 

policies that are application-focused, on top of 
any GPU interface (OpenCL, CUDA, HIP, oneAPI)

● Duplication of latency-sensitive data across 
devices

● Transformation, optimization of data layout on 
target accelerators

Future
● Continuous improvements to application 

performance, including better use of GPU 
memory capacity, leading to better scaling

● Towards a vendor-neutral, programming model 
agnostic memory management layer for future 
production systems

● Increased use across exascale applications, and 
more portable performance across complex 
architectures

Hardware

Placement Movement

Transform

Tilings

Apps Libs

Tracking

Explicit data replication in low-latency memory
● improved performance compared to OpenMP data sharing
● performance on par with tuned MPI process pinning
Integration into ExaSMR’s XSBench using the replicaset feature

Key Components
● Topology & hardware 

management
● Data layout descriptions 

(application-specific)
● Tiling schemes
● Data movement facilities
● Pipelining helpers 

(asynchronous requests)

UMap
Overview
● A library that enables user-space optimizations 

for memory mapping NVM devices into the 
complex memory hierarchy

● Facilitates direct access to large data sets 
through virtual address spaces

● Provides application-specific configurations 
suited to massive observational and simulation 
data sets

● High-performance design features I/O 
decoupling, dynamic load balancing, and 
application-level controls

Impact
● The UMap memory mapping abstraction is 

important for the blurring of the 
memory/storage hierarchy. UMap enables 
accessing file-resident data as memory

● UMap breaks the dichotomy between memory 
and storage by providing a unified virtual 
memory interface and simplifying application 
code

● UMap enables application-specific tailoring of 
the in-memory page cache and page size in user 
space

● Successful use cases demonstrated in graph 
processing, database, metagenomics, and file 
compression applications

Before ECP
● A proof-of-concept library then called PERMA
● Focus on NVM memories
● Requires kernel modifications and root privileges

Key Components
● Asynchronous message-based API (1—3)
● Resolves page faults in regions by fetching/flushing data 

from datastores following user-defined policies (4—6)
● Customized page sizes, buffer size, data source (4, 7)

Now
● Decoupled page fetch and eviction queues
● Concurrency-aware adaptation
● Dynamic load balancing
● Support for persistent memory allocator
● Supports network-attached memory

Searching out-of-core K-mer database shows UMap with 1.8X 
speedup over system memory map at high query concurrency

Future
● Continuous improvements to application 

performance, including ligra graph processing
● Continue improve caching policies for 

integrating remote memory on future 
memory servers into application

Overview
Node Resource Manager is a node-local userspace 
client-server daemon for managing scientific 
applications
● Compose an application in resource-constrained 

slices
● Monitor performance, power use, and 

application progress
● Arbitrate resources at the node level between 

application and runtime services
○ CPU cores, NUMA nodes, power budget

Impact
● Better energy efficiency across facilities, with 

users involved in the process
○ Facilities can make user workloads more 

energy efficient
○ Users can make flexible improvements to 

their use of compute nodes

Before ECP
● A collection of experimental components

○ COOLR: monitoring and control of CPU 
power, temperature, and frequency

○ Compute Containers: performance isolation 
through partitioning of physical resources

Now
● Integrated, production-

quality implementation
● Abstracted resource

accounting in the form
of “sensors” and
“actuators”, allowing for
flexible control design
○ Monitor application

and hardware
○ Actuators act on

hardware/application
○ Collection of control loops as functions of 

available sensors, actuators, and 
user-defined goal

● Dynamic resource management infrastructure 
available on production systems

● Power/energy efficiency optimization control 
loops for exascale systems

● Integration with vendor/facility stack
○ Variorum, PAPI, GeoPM, vendor APIs

Future
● Continuous increase in the quality and 

applicability of the resource policies available 
to users

● Moving towards more runtime-reconfigurable 
software components on compute nodes

● Improvements to the performance and energy 
efficiency of complex application workloads 
(workflows)

● Expected improvement to the energy efficiency 
of facilities

Overview
● Holistic System Power Management for exascale 

with production-quality software
○ Kernel-level module for safe access to 

low-level registers with msr-safe
○ Node-level: CPUs, GPUs Memory with a 

vendor-neutral open-source library, 
Variorum, which supports 

○ Application-level performance optimizations 
with a task-aware runtime: Intel GEOPM and 
Conductor, as well as Kokkos support

○ Power-aware resource management and 
scheduling with SLURM and Flux

○ Large-scale power telemetry with LDMS
● HPC PowerStack Initiative: Community-wide 

and international effort with industrial partners 
(Intel, AMD, IBM, NVIDIA, ARM), academic 
partners, and national labs

Impact
● Improved performance and energy efficiency 

across facilities, applications, as well as 
node-level, with users involved in the process
○ Facilities can make user workloads more 

energy efficient and performant
○ Users can make flexible improvements to 

their use of compute nodes

Before ECP
● Sparse efforts existed with msr-safe and libmsr, 

which were Intel-specific implementations
● Power-aware scheduling prototype based on 

SLURM simulator
● Runtime system prototype for optimization 

which was a research code, early version of 
Intel GEOPM

Variorum v0.6 (Sept 2022) allows for vendor- 
neutral power management for more than 15 
diverse architectures, including El Capitan and 
Aurora CPUs and GPUs. Right figure shows results 
from LDMS and Flux on two clusters (Intel and 
IBM) with E3SM and LBANN workflows at scale, 
including CPU/memory/GPU data

Now
● Production-quality power management 

software at all levels, ranging from the 
node-level all the way through system 
resource managers, across 15 architectures

● Variorum integrations with Caliper, Kokkos, 
LDMS, Flux, Intel GEOPM allowing users and 
administrators to manage power easily at 
various levels in a vendor-neutral manner

● Power management of large-scale workflows

Future
● Policies to mitigate power swings to be 

integrated into resource managers
● Optimization of science workflows and 

dependency graphs using integration with 
workload managers

● Power management with elastic scheduling 
● Additional support for upcoming architectures 

and performance counters

Modelization of application progress and power consumption, 
and adaptation of the controller parameters during the two-runs 
initialization phase.

https://web.cels.anl.gov/projects/argo/


