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Abstract—Exascale workloads are expected to incorporate data-intensive processing in close coordination with traditional physics
simulations. These emerging scientific, data-analytics and machine learning applications need to access a wide variety of datastores in
flat files and structured databases. Programmer productivity is greatly enhanced by mapping datastores into the application process’s
virtual memory space to provide a unified “in-memory” interface. Currently, memory mapping is provided by system software primarily
designed for generality and reliability. However, scalability at high concurrency is a formidable challenge on exascale systems. Also,
there is a need for extensibility to support new datastores potentially requiring HPC data transfer services. In this work, we present
UMap, a scalable and extensible userspace service for memory-mapping datastores. Through decoupled queue management,
concurrency aware adaptation, and dynamic load balancing, UMap enables application performance to scale even at high concurrency.
We evaluate UMap in data-intensive applications, including sorting, graph traversal, database operations, and metagenomic analytics.
Our results show that UMap as a userspace service outperforms an optimized kernel-based service across a wide range of intra-node
concurrency by 1.22-1.9×. We performed two case studies to demonstrate UMap’s extensibility. First, a new datastore residing in
remote memory is incorporated into UMap as an application-specific plugin. Second, we present a persistent memory allocator Metall
built atop UMap for unified storage/memory.

Index Terms—data-intensive, userspace, memory mapping, mmap, memory-mapped I/O.
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1 INTRODUCTION

THE emergence of analytics as a dominant component
of supercomputing workloads has a profound influ-

ence on exascale system architecture. Traditional simulation
workloads will rely on in-situ analytics to mitigate band-
width limitations to accessing global storage. New exascale
applications searching key/value stores, graphs, and scien-
tific data stores, will need large capacity memories to hold
analytics datasets [1], [2]. Technology drivers that enable
data-driven workloads include fast persistent memory that
introduces a new tier in the memory/storage hierarchy [3],
[4] and extreme-scale parallelism in CPU and GPU architec-
tures that offers new levels of on-node concurrency.

The rapidly evolving landscape of analytics-driven
workloads, combined with the blurred boundary between
memory and storage, and high-degree parallelism, offers
an opportunity to shift from traditional file read/write I/O
to a unified memory model in which data is accessed as
if entirely in memory. When files stored in fast node-local
storage are memory-mapped, an application is essentially
provided with a unified storage/memory of significantly
increased capacity. Data-intensive applications can exploit
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memory-mapped I/O to extend the virtual address space
of a process. On the Summit and Lassen pre-exascale ma-
chines, node-local NVMe SSD can extend the capacity by
terabytes. Accessing datasets in storage through memory
mapping shifts the burden of paging, prefetching, and
caching data between storage and memory to the oper-
ating system. Memory mapping is used in many system
software components and user-level libraries. The widely
used FITS (Flexible Image Transport System) library, used
by the astronomy community to store images and tables,
offers memory mapping. Many key/value stores, such as
sqlite, lucene, couchbase/moss, provide mmap access. On
future Exascale machines, even higher use of memory map-
ping is predicted as an efficient way to generate, share,
and analyze application-specific binary format data. In the
exascale regime, enabling scalable memory mapping at high
concurrency becomes critical to sustaining the performance
of these data-intensive applications. However, high concur-
rency in thread and process levels challenges the scalability
of the whole software stack, including the memory mapping
system software.

From the application perspective, knowledge gained by
developers that has accumulated over many years of suc-
cessful porting onto large-scale HPC machines can mitigate
inefficiencies inherent in general purpose system software.
Such application-specific knowledge can effectively steer
optimization and improve performance portability using
domain and algorithm information that is difficult to discern
at the system or device level. For example, an in-transit I/O
composition framework [5] can be customized by applica-
tion developers to handle massive datasets embodying such
structured objects as databases and key-value stores during
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the execution of a job. Instantiating datastores used in HPC
applications as files in a storage system may introduce
substantial inefficiency. For instance, data objects in a sim-
ulation process can be the data source for another analytics
process in the same job. Currently, these new datastores
cannot be memory-mapped but rely on application-specific
customization of a data service. An extensible memory-
mapping service would support the addition of new types
of datastores while providing a unified interface to the
application.

Existing system services like the Linux mmap can
memory-map files or devices into the virtual memory of
a process. This system service is most used in loading
dynamic libraries and can also be used for memory ex-
tension to support out-of-core execution. However, system
software is primarily designed for generality because it
has to be tuned for performance reliability and consistency
over a broad range of workloads. Thus, it might miss
the opportunity of application-specific optimizations. Also,
existing system service scales poorly at high concurrency [6].
Scalability at high concurrency is a unique challenge on
exascale HPC systems when applications have to leverage
high concurrency provided by the hardware, i.e., increased
core count and hardware threads. Furthermore, as a sys-
tem service, changes in configurations have system-wide
impacts so that characteristically different applications have
to compromise when co-running on one machine. Another
unique challenge on Exascale machines comes from the
dependence on the kernel. Users on HPC systems have
little privilege in modifying kernel settings, which could be
critical for performance optimization. How to support per-
formance portability when running on different machines
with different kernels? Finally, a kernel-based service also
limits the extensibility of supporting new types of datastores
to be memory-mapped into application processes’ virtual
address space.

The challenges in the system service motivate us to
investigate a userspace service called UMap [7], a C++ li-
brary used by a (multi-threaded) application process. UMap
employs the recent userfaultfd [8] mechanism to offload
page fault handling from the kernel into userspace. In a
userspace solution, special privileges are not needed to
modify system parameters, as would be required by kernel-
based solutions. It can also support much finer-granularity
control than the kernel in concurrency, I/O granularity,
caching, prefetching, and eviction policies to meet unique
requirements in applications. When porting an application
across different HPC systems, developers can communicate
application knowledge through these controls to mitigate
the impact from different kernels and reuse optimization
efforts. UMap provides both API and environmental con-
trols to enable configurable page sizes, eviction strategy,
application-specific prefetching, and detailed diagnosis in-
formation to the programmer. The parameters configured in
userspace are confined within the application so that con-
flicting choices in different applications can be supported
in the same OS environment, which is infeasible through
a system service. Finally, new types of data stores can be
created for memory-map service through an abstraction
layer without dependence on kernel support.

In this work, we prioritize scalability as the main de-

sign objective to optimize UMap for high concurrency
in Exascale-ready applications. UMap employs decoupled
queue management so that the fault handling process in the
userspace is split into multiple stages. Each stage handles
a simple task, i.e., polling notifications and fetching data
from a datastore, and is assigned to a group of dedicated
workers. The size of each worker group can be adapted
based on the complexity of its assigned stage. Concurrency-
aware adaptation is introduced to mitigate contention at
high concurrency. At massive concurrency, the method for
scheduling tasks from a task pool to workers is changed
from single task to a bulk schedule, i.e., a batch of tasks
to reduce synchronization on the shared data structure.
Eviction also employs a non-blocking selection of victim
pages to avoid waiting for specific page status. To mitigate
contention from file systems for file-backed datastores, we
introduce SparseStore that transparently splits a single back-
ing file into multiple files for improved throughput. We ob-
serve that memory usage in highly concurrent applications
could fluctuate considerably when the concurrency level
changes. Hence, we introduce dynamic adaptation of the
in-memory buffer capacity at runtime. Finally, when a large
number of threads contend for a shared buffer, thrashing
becomes severe. To address this, we introduce a hybrid
caching policy in the buffer to support a combination of
static and standard cache replacement.

In summary, our main contributions are as follows:
• We present the design and optimization of a userspace

memory-mapping service scalable to the high concur-
rency level needed by Exascale applications.

• We provide an open-source implementation based on the
UMap library1.

• We evaluate the performance of UMap in data-intensive
applications, including graph processing, database op-
erations, data analytics, and a production metagenome
analytic software.

• We demonstrate that UMap can outperform recent ver-
sions of the system service by up to 1.9 times at high
concurrency.

• Through a sensitivity study, we show the impact of
fine-grained, application-driven configurations through
UMap.

• In two case studies, we illustrate UMap ’s extensibility,
namely a new datastore mapped to remote memory and a
persistent memory allocator Metall used to construct and
analyze very large dynamic graphs.

2 BACKGROUND

Large data stores are memory-mapped in many data-
intensive applications for memory extension beyond the
capacity of physical memory. The most common approach is
through file-backed mmap in Linux. An alternative is to use
memory protection and signal handling. Due to the high
overhead in signal handling, a more efficient approach is
to leverage the asynchronous message mechanism through
userfaultfd.

We compare the different paths for page fault handling
in a file-backed mmap (step 2-5) and a userspace service

1. UMAP v2.0.0 https://github.com/LLNL/umap
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Fig. 1: We compare memory-mapping through the operating
system with that through a userspace service.

(step 2,6-10) in Figure 1. In the virtual address space, there
is a file-backed mmap region (light blue) and two userfault
regions (dark blue). The application accesses these memory
regions through load and store instructions. A page fault
is triggered if the page table entry (PTE) of the accessed
address is not found in the page table. The page fault is
trapped by the OS (step 2). If the OS finds the faulting
address inside the file-backed memory region, it accesses
the backing store, i.e., File A in this example, and copies the
page into a free frame in the physical memory (step 4), and
then resets the PTE in the page table (step 5). In contrast,
in step 2, if the OS finds that the faulting address comes
from the userfault memory regions, it will send a notifica-
tion to the userspace handler (step 6). The userspace may
support different types of data stores backing the userfault
regions. In the example in Figure 1, the userspace service can
fetch data either from a database or from remote network-
attached memory (step 7). Once the userspace copies the
required data into an in-memory buffer, it informs the OS
through UFFDIO COPY to atomically copy data in that
buffer to a free frame in the physical memory, i.e., step 4
and 5 are common in both mmap and userfault paths.

The tradeoff between the kernel-based (i.e., mmap) and a
userspace service (i.e., userfaultfd) lies in the overhead and
flexibility. As shown in Figure 1, extra steps and commu-
nication are required in the userspace path, including step
6, 7, and 8. These result in increased latency of handling
a page fault. Meanwhile, the kernel-based mmap often can
bypass certain system calls and lower overhead [6]. How-
ever, only anonymous and file-backed memory-mapping
are supported, so that path 7 to a remote memory page
cannot be accomplished solely by the system service. Also,
changing configurations of a system service often requires
’sudo’ privilege, which is not permitted for most HPC users.
Even the supported configurations are quite limited. For
instance, anonymous memory regions support 4KB pages
by default and may also support 2MB and 1GB pages
with Linux’s transparent huge page (THP). However, huge
pages in file-backed memory regions are not supported in
mainline kernels. A userspace service can provide many
finer-granularity configurations than the system service. For
instance, depending on the access pattern and compute in-
tensity, an application may prefer a page size not supported
by the system service. Moreover, a userspace service can
be extended to support new types of data stores, such as
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databases and remote memory, without dependence on the
kernel.

3 DESIGN

The architecture of UMap is illustrated in Figure 2. Each
userfault region in Figure 1 (dark blue) is represented by
a Region object that records its start virtual address, size,
and links to a backing data store object. A region is further
divided into an array of uniform UPages, whose size can
be configured at a fine granularity. UMap keeps a busy list
of UPages whose data has been fetched into the DRAM
and a free list of UPages that are yet to be assigned. By
adjusting the total size of the busy and free lists, UMap
can control the DRAM capacity it uses for caching. Data
is physically located in a data store, which is defined in a
Datastore object. Datastore provides an extensible abstraction
layer so that new types of data stores can be defined. A Data-
store must define functions for reading and writing data to
their backing storage and may include additional functions
for optimization and consistency. For instance, if files are
used to represent a data store, the fetch functions could be
implemented as read()/write() through a file system. If a
remote-memory data store is defined, the functions could
use RDMA or MPI for communication over the network.
In the example of Figure 2, two types of data stores are
defined, i.e., Datastore A for backing storage and Datastore
B for network-accessed memory, respectively.

When page faults in the userfault regions occur, the
OS sends notifications through uffd msg to the userspace.
The uffd manager is dedicated to polling for notifications
and translating page faults into specific Fetch Ops (denoted
as Fetch Ops in step 2). These Fetch Ops are distributed
among a group of Filler workers (step 3) with configurable
concurrency and load balancing (see Section 3.1). The filler
workers are dedicated to fetching data from respective data
stores into the physical memory. Eviction could occur either
on-demand or proactively in the background. The Evict
Managers are dedicated to selecting UPages that need to be
evicted from the DRAM. They translate the selected victim
UPages into specific Evict Ops (step 5), which are scheduled
onto a group of UMap Evictors (step 6). We describe the
design principles of UMap for scalability and extensibility
in the remainder of the section.
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3.1 Scalability

Scalability is achieved through concurrency optimizations
and configurability.

3.1.1 Concurrency Adaptation

Decoupled Queue Management UMap splits the task of
page fault handling into multiple stages, i.e., steps 1-7 in
Figure 2), and supports concurrency adaptation in these
stages. The number of workers used by a stage can be
optimized according to the stage complexity, application
characteristics, and hardware features. In general, short-
latency stages only require a few workers while long-latency
stages employ a large number of workers. For instance,
polling notifications of page faults from the operating sys-
tem (step 2 in Figure 2) is a simple task performed by one
uffd manager. It translates a faulting event into specific
Fetch Ops to be performed by workers in the next stage.
In contrast, step 4 is a long-latency stage that retrieves data
from external storage to the physical memory and thus, is
often configured with the most workers to hide the long
latency. Second, the concurrency in applications often affects
the rates of generated page faults. When scaling up the
concurrency in applications, the capability of handling page
faults should also be scaled up accordingly. Such adaption
to the application concurrency is supported in UMap but
limited in the system service. Finally, the decoupled queue
could also cope with the performance disparities in some
storage devices. For instance, asymmetric read and write
performance is a known issue in many persistent memories
and SSD. Decoupling read and write operations into two
separate groups, i.e., Fillers and Evictors could match the
characteristics of different data stores.

Constrained Contention. We limit concurrent updates
on shared data structures within a group and between
groups to mitigate the synchronization overhead at high
concurrency. Fillers and Evictors are the two largest groups
of workers. Each Filler and Evictor is assigned with distinct
UPages to work on, e.g., fetching or writing data and
updating status. Therefore, even with a large number of
Fillers and Evictors, the contention on shared resources is
limited and does not increase appreciably with the number
of workers. The busy list of UPages may be modified by
the uffd manager and the Evict manager concurrently. We
limit the contention on the busy list in two ways. First, the
uffd manager appends entries to the tail while the Evict
manager removes entries from the head. They do not clash
on entries as long as the list is not empty. Second, only
one uffd manager and few Evict managers are used because
the tasks they need to perform are simple and fast. Finally,
the free list can be updated by the uffd manager and the
Evictors, i.e., the uffd manager removes while Evictors add
entries to the free list. Hence, synchronization on the free list
is needed to ensure correctness. As these two groups update
the head and tail of the free list respectively, the contention is
constrained as long as the free list is not empty. UMap does
not build per-core lists as [6] because a userspace service
does not assume that the application will always use all
cores on a system.

Load balancing UMap manages all UPages that have
been fetched in the physical memory in all userfaultfd

memory regions in one pool so that the DRAM resource is
allocated fairly based on the hotness of each region. Skewed
data access is a common characteristic in data-intensive
applications. Thus, different regions may differ significantly
in the number of accesses. For instance, in graph processing,
a graph often has regions of high degree vertices that result
in more accesses than other regions. To address imbalanced
accesses, Ops from all memory regions are pooled in one
queue and redistributed among all workers. Load balancing
is achieved through the dynamic scheduling in step 4 and
6, where each worker is assigned a uniform workload.
Memory regions with more page faults will naturally be
assigned with more workers because Ops in their region
occupy larger portions in the pool.

Concurrency Control. High concurrency often imposes
pressure on task scheduling, hardware, and memory usage.
To tackle these challenges, UMap employs concurrency con-
trols. First, when scheduling Ops in a queue to a group
of workers, i.e., step 4 and 6, UMap changes to a batch
schedule if the scheduling overhead outweighs the cost of
completing an individual work item. The metric for switch-
ing the scheduling policy is defined by the ratio between the
number of dispatched work items and inactive workers in a
sampling period. A low metric value indicates too few items
get scheduled while a large number of workers are waiting
for assignment. Once switched, a batch of work items will
be assigned to a worker at one time. The batch size is
empirically set to 16. To accommodate a batch schedule, we
also change the victim page selection to a batch selection.
Modifying the normal LRU policy that selects the least
recently used page for eviction, UMap selects a batch of
least recently used pages that are available without the
need for waiting for writing back or other operations to
complete. Note that reducing the number of workers cannot
address this problem because the scheduling overhead is not
amortized and also the concurrency in this stage would be
reduced. Second, some devices require concurrency control
to avoid performance degradation. For instance, the Optane
DC persistent memory can sustain high read bandwidth at
high concurrency but write bandwidth degrades substan-
tially at high concurrency [9]. Through concurrency control,
UMap can throttle the number of threads performing con-
current writes to avoid performance degradation.

Finally, memory usage fluctuates in a running system
when an application changes phases and when other pro-
cesses start or finish. We support the dynamic adaptation
of DRAM usage in UMap to address these challenges. A
background thread in UMap monitors memory usage in
UMap and available memory on the system. Adaptation is
performed to either reduce memory usage in UMap when
available memory on the system is low or to increase UMap
memory when more system memory becomes available.
The monitoring overhead is negligible because it is off the
critical path. However, the adaptation has overhead from
synchronization and reallocation. We reduce the overhead
of adaptation by reducing its occurrence to the minimum
possible based on estimation. In particular, UMap keeps a
history of the number of processed page faults and the
change in memory usage in UMap in the last N periods.
If the memory usage in UMap is estimated to exceed the
available memory on the system in the next M periods,
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UMap reduces the size of the free list accordingly. Instead,
if the free list is predicted to be exhausted in the next
M periods while the available memory on the system is
substantially larger, UMap increases the size of the free list.
A larger N keeps a longer history but is less reactive to new
changes. A large M results in unnecessary adaptations to
occur early. Empirically, we set N to be five and M to be
ten.

3.1.2 Configurability
One unique advantage of HPC applications is the accumu-
lated application knowledge gained through many years of
porting efforts towards Exascale machines. UMap exposes
extensive fine-grained controls to the userspace to leverage
such application knowledge, which is either not possible or
difficult to accomplish in kernel-based approaches.

DRAM Usage. UMap supports specific constraints of
DRAM usage for caching memory-mapped regions. For
multiple applications co-running on a compute node, their
DRAM usage for UMap-ed regions can be allocated based
on their relative priorities. Currently, the system service
cannot limit the DRAM usage directly, and an application’s
performance may fluctuate due to interference from other
applications’ activities. Also, applications exhibit different
sensitivity to page cache size, i.e., increasing page cache may
not bring comparable performance improvement, which
also requires explicit configurations of DRAM usage.

I/O Granularity. The size of a UPage is configurable
and it determines the finest I/O granularity in memory-
mapping. Linux systems typically support limited page
sizes, i.e., 4K, 2M, 1G, in anonymous memory regions,
and only 4K page size is supported in file-backed memory
regions. The optimal I/O granularity in an application of-
ten depends on the access patterns and compute intensity.
With fine-grained control, an application’s page size can be
configured to better match its access profile.

Concurrency. The number of workers in the stages
of page fault handling can be configured separately. The
changes in concurrency can be either tuned for architecture-
aware optimization or based on application-specific knowl-
edge. For instance, the number of fillers and evictors can
be adjusted to the read and write performance of the back-
ing storage, respectively. Through UMap, architecture- and
application-specific optimizations require no modifications
to the kernel and only impact the application. Multiple
applications can co-exist in the same OS with their unique
configurations.

Hybrid Caching. UMap supports a hybrid of static
and dynamic cache policies for memory-mapped regions.
When evicting pages from the physical memory, LRU cache
replacement policy is employed by default. However, at
high concurrency, when a large number of threads access
the same hot memory region, thrashing can become se-
vere, causing frequent page-in and out of the same pages.
To address this, UMap supports static pinning of partial
memory regions in the physical memory, while employing
LRU cache replacement for the other parts. The selection of
static partitions needs to leverage application knowledge,
e.g., application algorithms or offline profiling, to iden-
tify subregions that are densely accessed throughout the
execution. While pinning pages is possible in the system

service, there are system level limits on how much memory
an unprivileged process may lock. UMap imposes no such
limits. UMap also supports irregular prefetching that brings
selected parts of memory regions into the physical memory
asynchronously in the background.

4 EXTENSIBILITY

In this section, we illustrate the extensibility of UMap in
supporting two new types of data stores – SparseStore and
RemoteStore.

4.1 SparseStore
SparseStore is a backing store optimization that improves
storage efficiency of working with sparse data. SparseStore
also enhances the scalability of multi-threaded applications
by reducing I/O contention on the backing store.

SparseStore partitions the backing file of a UMap region
into multiple files of equal size. Correspondingly, the UMap
region is logically partitioned into segments, where each
segment maps to a backing file. The backing files are created
on-demand, i.e., when an UMap region is allocated, no
backing files are created until their mapped segments in
the UMap region are written for the first time. The on-
demand creation of backing files provides storage efficiency
for sparse data, while the multi-file solution reduces the
multi-threaded contention on the backing store as threads
writing to different files are not serialized. SparseStore is
implemented as a store object in UMap that can optionally
be used instead of the default store object. A SparseStore
object is instantiated in either create mode when mapping
an empty region, or open mode when mapping a region
that was previously created using SparseStore. The segment
granularity is a configurable parameter that can be set
when instantiating a SparseStore object in create mode.
SparseStore implements read() and write() backing store
access functions that are invoked by UMap when handling
a page fault. These functions map the page address to a
backing file index and file offset. If a dirty page is being
evicted for the first time, the write() function will create
the corresponding file and then writes the page to its corre-
sponding file offset.

4.2 RemoteStore
RemoteStore is a new data store that uses the physical
memory of remote compute nodes as the backing storage.
The main motivation for RemoteStore is to understand the
impact of future HPC systems that are equipped with
heterogeneous sub-clusters, e.g., memory nodes with huge
memory capacity and slim nodes with small memory capac-
ity. Clusters equipped with memory nodes and slim nodes
can achieve high memory utilization for compute-intensive
workloads and still meet the requirement of memory-
intensive workloads [10].

We support RemoteStore by defining a new store object
in UMap. RemoteStore consists of client-side and provider-
side components. The client-side component resides in the
application process running on slim nodes. It records infor-
mation of the remote memory nodes and mapped remote
data stores. The provider-side component resides on one or
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TABLE 1: Main Configuration Options in UMap
Variable Description

umap pagesize the size of internal Upages in memory regions
umap fillers the number of workers to fetch from the data store
umap evictors the number of workers to evict and write back pages
umap high watermark the threshold of used Upages to start eviction
umap low watermark the threshold of used Upages to stop eviction
umap bufsize the maximum DRAM usage for caching pages

multiple memory nodes. It responds to requests from the
client-side components, likely from multiple slim nodes, by
initiating the actual data transfer and then notifying the
client-side when the data transfer completes. RemoteStore
uses remote procedure call (RPC) from the Mercury [5]
library for fetching pages over the network. This communi-
cation layer supports the most common transport protocols
on HPC systems, including RDMA, MPI, and TCP.

5 UMAP APIS
UMap is a C ++ library using the userfaultfd [8] feature of
Linux, an asynchronous page fault management protocol
available in production kernels since 4.3. UMap uses the
userfaultfd system call to offload page fault handling in
selected virtual memory address into userspace. It uses
UFFDIO_COPY to atomically copy data to free frames in
physical memory and wake up the blocked process. UMap
can use any underlying file systems, such as XFS and
EXT4, for a file-backed data store. It also can use any
communication libraries to move pages over the network.
UMap bypasses the Linux page cache and uses madvise
with MADV DONTNEED to explicitly evict pages from
memory. UMap is highly multi-threaded: groups of workers
at each stage are implemented by POSIX threads. UMap
defines an abstract store class with common interfaces,
such as read from store() and write from store() to support
extensibility of data stores. A new type of data store needs to
implement the actual data access functions. Each memory-
mapped region is backed by a data store whose data access
functions are called to resolve page faults in the region.

UMap provides a similar interface to mmap to ease port-
ing existing applications. An application registers memory
regions to be managed by UMap through the umap and
uunmap interface. UMap additionally supports a rich set of
configuration options at the application level through APIs
and environmental variables, e.g., the number of fillers and
evictors; the maximum size of physical memory used for
buffering pages; and I/O granularities. We list important
environmental variables in Table 1.

We demonstrate a simple example in Listing 1. Two
types of data stores are memory-mapped into the process’s
virtual address space. By default, umap() assumes a file-
backed data store. Or, as shown in line 7, a custom SparseS-
tore is defined and passed into umap ex() for memory-
mapping. The main computation in the application accesses
these memory regions as if to malloc-ed allocations. Finally,
resources are released in uunmap().

6 EVALUATION

We evaluate the performance of UMap in this section.

Listing 1: An example of memory-mapping two data stores
1 //Memory-map a file-backed datastore
2 int fd = open(file_name, O_RDWR);
3 void* addr0 = umap(NULL, region_size1, prot, flags,

fd, 0);
4
5 //Memory-map a SparseStore as the backing store
6 SparseStore* sstore = new SparseStore(region_size2,

root_path, per_file_size);
7 void* addr1= umap_ex(NULL, region_size2, prot, flags,

-1, 0, sstore);
8
9 //Perform the main computation loop

10 compute();
11
12 //Unmap from the virtual address
13 uunmap(addr0, region_size1);
14 uunmap(addr1, region_size2);

TABLE 2: The summary of workloads
Acronym Application Input Size

Sort data processing - sorting a 500 GB input array of 64-bit words
BFS graph processing - breadth-first search RMAT scale 28-31 graphs (67-530 GB)

NStore in-memory database a 384 GB memory pool
LMAT a metagenomic classification software a 480 GB k-mer database

6.1 Experimental Setup
Platform. We used AMD testbeds that feature AMD EPYC
7401 (24 cores /48 hardware threads) processors running at
1.2 GHz. The testbed has a total of 256 GB DDR4 DRAM
and 3 TB NVMe (type: HGST SN200) SSD mount through
the xfs file system. The node architecture is similar to the
Exascale Frontier node. The platform runs Fedora 29 with
experimental Linux kernels 5.6.0 and 5.1.02. We also use a
production cluster called flash with Intel processors. Each
node has two Intel Xeon E5-2670 v3 processors with 12 cores
(24 hardware threads) running at 2.3 GHz (Turbo 3.1 GHz).
The machine has 256 GB DDR4 DRAM and 1.5 TB local
NVMe SSD (type: HGST SN150) mount through the xfs
filesystem. The platform runs the Linux mainline Red Hat
Enterprise Linux 7.6 kernel 3.10.03.
Workloads. To reflect the data-intensive nature of emerg-
ing HPC workloads, we use four applications: out-of-core
sort, scale-free graph traversal, database operations, and
metagenomic analysis. Table 2 summarizes the applications
and their workloads in our evaluation. The applications are
compiled using GCC 7.1.0 with OpenMP support. We repeat
measurement ten times and report the average execution
time or application-defined figure of metric (FoM). Sort is a
multi-threaded program that performs quicksort on values
stored in a file. The BFS graph traversal benchmark is de-
rived from Graph500 [11]. It performs a level-synchronous
breadth-first search (BFS) on an input graph from a source
node. We use a Kronecker generator to generate scale-free
input graphs saved in CSR (compressed-sparse row) format.
The graphs have up to 2.1 billion vertices and 34 billion
edges. N-Store [12] is an in-memory database, modified to
use UMap API by changing approximately ten lines of code.
N-Store uses persistent memory as its memory pool for data.
N-Store supports multiple executors to execute transactions
to the database concurrently. Our evaluation uses the pop-
ular YCSB [13] benchmark with eight million transactions

2. The kernel is configured with transparent huge page (THP) always
enabled so that khugepaged runs in the background.

3. The kernel is configured with THP disabled.



7

(a) Sorting an array of integers. (b) Breadth-first search on a scale 31 RMAT graph.

(c) YCSB transactions on the NStore database. (d) Metagenomic queries on a k-mer database.

Fig. 3: The overall performance of four data-intensive applications atop UMap compared to the baseline at increased
application concurrency. All experiments are out-of-memory executions.

and five million keys. The Livermore Metagenomics Toolkit
(LMAT [14]) is a production application widely used for
scalable genome classification in a metagenomic sample. K-
mer queries search a large custom database that typically ex-
ceeds the DRAM capacity on a single machine. The lookup
process is highly concurrent such that millions of queries
are distributed among a group of LMAT threads.

Configurations of UMap The rich set of options in UMap
enables an extensive tuning space. We employ a decision
tree to configure critical options based on the application
characteristics, instead of sweeping all combinations. The
first factor to consider is data locality, e.g., data reuse in
fetched pages, either through prior application knowledge
or the built-in profiling capability in UMap. In general,
applications with low data reuse are configured with small
page sizes and vice versa. Next, large page sizes need to
avoid excessive I/O that bring too much unused data into
memory, which is often indicated by performance degra-
dation at increased page size. For applications configured
with small pages, further tuning in the high watermark and
buffer sizes may increase hits in memory. Finally, the read-
write-ratio and the underlying device characteristic can be
used to guide the adjustment of the number of fillers and
evictors. The extent of tuning efforts is a choice by the user,
and autotuning is a possible way to eliminate human efforts.

6.2 Overall Performance

We show that UMap improves application scalability over
the baseline that uses the current system service (mmap) in
the kernel in four data-intensive applications at increased
application-level concurrency. UMap outperforms the base-
line at different levels of concurrency (Figure 3), achieving
1.22×, 1.30×, 1.90×, and 1.36× speedup at the highest con-
currency, respectively. In this set of experiments, we choose
large input problems so that the applications exhibit out-
of-core execution that extends their memory with external
storage. The data stores in these applications are 150%-200%

that of the memory capacity on the testbed. Figure 3 reports
the performance and relative speedup by UMap.

Out-of-core Sort benchmark performs quicksort on a
large data array, i.e., 500 GB in this experiment. Figure 3a
shows that UMap-based version outperforms the baseline
version by 1.15–1.22× when running with 48 to 240 appli-
cation threads. The array is a memory-mapped file stored on
the local SSD on the AMD testbed. The access pattern in this
benchmark has fairly good sequential and temporal locality.
Once a page of the memory-mapped region is fetched in,
the page is likely to be traversed by read accesses at a stride
of eight bytes (i.e., 64-bit words). Write access would only
update a page that is already fetched in the in-memory
cache, i.e., always a hit in memory. Such access pattern
favors large I/O granularity because having fewer page
faults decreases the time spent in servicing page faults, and
issuing large I/O transfers increases the bandwidth. For
this experiment, UMap uses 8MB UPages in the memory-
mapped region while the baseline ran with 4KB system
pages because THP does not support file-backed memory
regions. We also performed tests to show that excessively
large UPages would reduce the performance because of
amplified writes back to the storage. Due to in-place sorting,
accesses to the memory-mapped region are read and write
mixed. Hence, UMap needs to flush a dirty UPage into
storage when evicting it from DRAM. Even if only one data
element is updated in an evicted page, the whole page needs
to be written back to the storage. A possible optimization
to reduce write amplification is to keep track of dirtiness
in sub-UPage. This experiment also shows that the optimal
I/O granularity in an application is often different from a
fixed set of configurations supported by the system solution,
which requires configurability in the userspace.

Scale-free Graph Traversal is fundamental for graph
processing that plays a vital role in social networks, data
mining, and bioinformatics. Figure 3b shows that UMap-
based implementation of BFS outperforms the system ser-
vice by up to 1.30× on a scale 31 RMAT graph on the
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flash testbed. In graph applications, the data structures
of graph edges and vertices often dominate the memory
footprint, and can easily exceed the memory capacity. In this
benchmark, graph structures including edges and vertices
are backed by a file-type data stores on the local storage,
and memory-mapped into the virtual address space. The
input graph has about 2.1 billion vertices with an average
degree of 16. The memory-mapped region reached 530 GB
so that the execution is out-of-core. BFS is a read-intensive
workload because the edge and vertices structure remain
unchanged after BFS. Hence, UMap does not need to write
back to storage when evicting pages from the in-memory
buffer. As a level-synchronous implementation of BFS with
input graphs in CSR format, the access pattern in this
workload has mixed sequential and random accesses, where
edges are iterated while vertices may be randomly accessed.
The ratio between sequential and random read depends
on the input graph, i.e., the distribution of vertex degrees.
In general, a graph with more high-degree vertices would
have more sequential access. Once a page is fetched in the
memory, at least all edges of the vertex will be accessed. A
large page size benefits those vertices with high degrees but
results in unused data for vertices with low degrees. With
refined UPage sizes, UMap can better match the structure
of an input graph. Figure 3b shows that the system service
requires as high as 192 application threads to effectively hide
the latency and achieve its best performance. In contrast,
UMap enables the application to reach optimal performance
at any concurrency above 48 threads.

Database Operations. NStore is an in-memory database
designed for persistent memory. We ported NStore to use
UMap APIs by merely changing ten lines of code, where
memory-mapped regions are added into its memory pool
for data. The experiments used a 384 GB datastore on the
local SSD of the AMD testbed. The workload uses the
popular YCSB [13] benchmark with eight million transac-
tions and five million keys. These transactions are divided
into a group of executors for concurrent execution. In this
experiment, we scale up the number of NStore executors
from 4 to 64 and report its application-specific throughput
in Figure 3c. The access pattern in the benchmark has a
relatively low locality because the transactions may access
random entries in the database. Therefore, large page sizes
would bring unused data, and thus, NStore prefers a rela-
tively small page size of 256KB in contrast to the Sort and
BFS benchmarks. We also performed a sensitivity study to
confirm that NStore has low sensitivity to the changes in
the page sizes as long as they remain smaller than 1MB.
The baseline with system service uses the default 4KB page
size as it is the page size most close to the access pattern.
This workload has mixed read and write accesses so that
extra overhead is incurred in UMap to ensure updates
are persisted into the backend datastores. The speedup by
UMap compared to the system service scales up at high con-
currency at the application level. At the lowest concurrency,
NStore by UMap achieves 1.30× speedup. When increasing
the number of executors, the speedup by UMap over the
baseline increases substantially to 1.90×.

Metagenomic Analysis. LMAT is a production soft-
ware used for scalable metagenomic classification, including
COVID-19-related research. The execution time of taxon-

TABLE 3: The number of major and minor page faults in
LMAT with mmap and UMap in four production query files.

mmap UMap
Input Problem Major Page Faults Minor Page Faults Major Page Faults Minor Page Faults

S7 8.14E + 07 6.44E + 08 6.23E + 07 3.29E + 08

S8 5.93E + 07 1.30E + 09 4.02E + 07 3.58E + 08

S9 2.17E + 08 2.79E + 09 2.97E + 08 1.45E + 09

S10 7.40E + 07 9.21E + 08 6.77E + 07 3.98E + 08

omy classification is dominated by calculating the score
of taxonomy IDs for each k-mer in a query. The score is
calculated by evaluating the list of taxonomy IDs associated
with a k-mer in the database. The database is constructed
offline from a large collection of reference genome sequence
databases and an NCBI taxonomy. As new sequences are
added to reference collections, the size of a production k-
mer database could reach mulitple TeraBytes in recent de-
velopment. To support execution on common testbeds with
moderate DRAM capacity, the k-mer database is stored in a
file and mapped into the LMAT process’s virtual address
space during taxonomy classification. In this experiment,
we use a realistic query set that consists of over 18 million
reads. The lookup process is highly concurrent such that
millions of queries are distributed among a group of LMAT
threads. Each read consists of a set of k-mers. For each k-
mer, LMAT needs to query the k-mer database. The lookups
in the database result in read-only accesses that are mostly
random because k-mers in one read often have little locality
in the database. Once a page is fetched into the in-memory
buffer, the reuse on the page is also low because only the
bytes of k-mers and taxonomy IDs are accessed. Therefore,
LMAT benefits from small page size, and both UMap and
the system service use 4KB page size in this experiment.
Figure 3d reports the execution time of the query set at an
increased number of LMAT threads on the flash testbed.
The results show that UMap outperforms the system service
when more than 48 LMAT threads are used. The speedup
by UMap increases when more LMAT threads are used and
reached 1.36× at 240 threads. The system service failed to
scale at higher concurrency in LMAT, i.e, the execution time
increased when more than 144 LMAT threads are used. In
contrast, UMap sustained the performance of LMAT even at
high concurrency.

6.3 Performance Analysis

To quantify the reduced kernel overhead in page faults, we
measure the number of major and minor page faults in the
baseline LMAT with mmap and the optimized version with
UMap. Table 3 reports the comparison in four production
inputs. UMap reduces the number of major page faults in
input S7, S8, and S10 by 1.31×, 1.48×, and 1.09×, and the
number of minor page faults by 1.96×, 3.62×, and 2.32×,
respectively. For input S9, UMap increased the number of
major page faults by 1.36× but reduced minor page faults
by 1.93×. Both types of page faults incur the overhead of
fault handling. However, major page faults require extra
overhead for I/O to access devices to fetch pages into mem-
ory. Thus, comparing the major faults in mmap and UMap
provides an estimation in data movement from storage to
memory. The overall application performance is a mutual
result of both page faults.
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(a) Sort

(b) LMAT

Fig. 4: The run time using different optimizations in UMap.

(a) Configuration of buffer size.
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Fig. 5: The impact of different UMap configurations on BFS.

We study the effectiveness of various optimizations in
UMap. The basic implementation of UMap is denoted as
umap basic. UMap with the dynamic adaptation of mem-
ory usage at different levels of concurrency is denoted as
umap adapt. The optimization that uses a hybrid of static
and dynamic caching in DRAM is denoted as umap cache.
umap watermark denotes a high watermark that activates
page eviction when 99% of UPages are assigned and de-
activates eviction once fewer than 95% of UPages are as-
signed. For comparison, the execution time of mmap is also
presented at each concurrency. Figure 4b shows that LMAT
benefits almost equally from the static caching and dynamic
memory usage at different concurrencies. LMAT shows little
changes to watermarks and thus is omitted in the plot. Un-
like LMAT, the Sort application benefits the most from the
increased watermark at high concurrency. Figure 4a shows
that at 240 application threads, umap watermark brings an
additional 1.11× improvement. umap cache is omitted in
Sort as it is not applicable based on its access pattern.
The results show that no single optimization technique can
uniformly benefit all applications and even for the same
application, the effectiveness of each optimization may vary
as concurrency changes.

6.4 Sensitivity Study

We perform a sensitivity study to understand the impact of
UMap configurations (i.e., page sizes and buffer sizes), input
data, and kernel versions.

(a) Input data size. (b) Linux kernel versions.

Fig. 6: The impact of input data sizes and kernel versions on
BFS.

DRAM Cache Configuration. We configure the buffer
size in UMap to 10-100% that of the memory-mapped data
store. Equivalently, the dataset is 1000-100% memory ca-
pacity. Figure 5 reports the execution time of BFS on a scale
29 graph at these configurations. Note that 100% DRAM
cache represents the optimal performance. The results show
that increased memory capacity may not always improve
performance because the performance only starts increasing
when more than 60% data can be cached. One takeaway is
that if the memory capacity is well below these threshold
values, the DRAM resources can be prioritized for other
activities.

Page Size Configuration. We evaluate the impact of
different configurations of page sizes in Figure 5b. As de-
scribed in Section 6.2, the BFS benchmark has relatively
good locality and favors large page sizes. When increasing
the page size from 4KB to 32KB, the execution speeds
up steadily six times. From 32KB to 256KB page size, the
performance remains stable. However, excessive I/O starts
to offset the performance benefit for page sizes at 512KB.
Tuning the configuration of page sizes needs to consider
both locality and data usage.

Input Data Size. We perform BFS on increased scales
of graphs to understand the impact of input data size. All
the executions are out-of-core with DRAM usage restricted
to 50% the size of each input. Figure 6a shows that UMap
always outperforms mmap. The speedup by UMap over the
system service increases when the scale of the input graph
increases from 28 to 31, i.e., 268 million to 2.1 billion vertices.
When moving towards Exascale, data sets used in appli-
cations are expected to increase exponentially [1]. While
performance using the standard system service diminishes
for the scale of these data-intensive tasks, we demonstrate
that a custom service designed for HPC applications can
support high performance for large-scale data sets.

Kernel Dependency. UMap has a high dependency on
the underlying kernels because it is completely imple-
mented inside the userspace. We perform BFS on a scale
31 graph on three kernel versions, i.e., Linux-3.10.0 on the
flash node, Linux-5.1.0 and 5.6.0 on two AMD nodes. Note
that their processors run at different speeds. For each ker-
nel version, we compare the relative performance between
UMap and mmap in Figure 6b. As expected, both UMap and
mmap show high sensitivity to the kernel version. More
importantly, Figure 6b shows that UMap outperforms the
mmap system service on all these kernel versions. This
result demonstrates that a userspace service like UMap
could potentially reduce dependence on kernels on exascale
machines and improve performance portability.
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Fig. 7: The aggregate throughput in LMAT when an in-
creased number of client nodes lookup queries in a k-mer
database backed by a RemoteStore in UMap.

7 CASE STUDY

We demonstrate two use cases of UMap in utilizing Remote-
Store for querying the LMAT k-mer database on remote
memory and SparseStore in a scalable persistent memory
allocator called Metall.

7.1 Case Study I: Database on Remote Memory

In this case study with LMAT, the k-mer database backed
by a RemoteStore stays in the physical memory of remote
nodes representative of fat memory servers that may be-
come available in heterogeneous sub-clusters on future HPC
machines. The porting from the original file-backed data
store to a RemoteStore is minimal as the interfaces exposed
to the applications are similar (see Listing 1). Transparent
to the application, a RemoteStore can be distributed over
multiple memory nodes for high aggregated bandwidth
on the network. Figure 7 reports the aggregate throughput
when running LMAT on one to four client compute nodes. A
common k-mer database is distributed across three memory
servers. The database, backed by a RemoteStore, is shared
by these clients by mapping it into their virtual address
space. Each client processes a different set of realistic queries
that include 12 million to 49 million reads. Essentially,
without porting LMAT into a new programming model,
UMap transforms a single-node execution model into multi-
node execution. The DRAM usage on each client node is
limited to 64 GB to emulate slim nodes with small memory
capacity on future machines. The scaling results show that
the aggregated throughput scales almost linearly as the
number of client nodes increases. Note that RemoteStore
is implemented for fast prototyping but not optimized for
performance. Without the RemoteStore, LMAT must run on
a fat memory node and read in the entire database for each
run, or must have access to the k-mer database through
the file system (node local, rack local, Lustre, . . . ) A single
RemoteStore flexibly mapped onto a pool of remote memory
enables the execution of multi-node queries with a minimal
requirement on storage and memory resources.

7.2 Case Study II: A Persistent Memory Allocator

Metall [15] is a C++ memory allocator for persistent mem-
ory. Metall was designed to allow data analytics applications
to create and access persistent data structures beyond the
memory capacity of a single machine. While Metall is a
general purpose allocator, in this study we focus on using it
for graph applications. Graph analytics applications usually

Fig. 8: The throughput of dynamic graph construction using
Metall with UMap and two configurations of SparseStore in
comparison to mmap (red dotted line).

perform data ingestion, which indexes and partitions data
with analytics-specific data structures. It is often the case
that creating the graph is more expensive than performing
any single analytic. Metall reduces the overhead of graph
construction by providing a persistent heap to create and
update arbitrary dynamically instantiated binary data struc-
tures. Metall incorporates the rich C++ interface developed
by the Boost.Interprocess library to allow applications to
store complex custom C++ data structures in persistent
memory directly. Internally, Metall is implemented based on
memory-mapped files to provide applications with trans-
parent access to data allocated in persistent memory.

We use UMap to replace the default system service for
memory-mapping files to enable application-specific opti-
mizations in graph algorithms that use Metall. The porting
merely requires replacing the use of system mmap() with
UMap APIs. Real-world graphs, e.g., social networks, could
have very sparse structures. To optimize storing and pro-
cessing sparse data structures, we configure Metall to uses
the SparseStore in UMap.

We evaluated the performance using a graph construc-
tion benchmark [15]. The benchmark incrementally adds
edges to a graph data structure in adjacency list form in a
Metall persistent heap. Experiments were performed on the
AMD testbed described in section 6.1, generating a graph of
size 256 GB and storing it on an NVMe SSD. Note that in
intermediate steps there is much higher memory consump-
tion in the persistent heap than the final graph file size.
The baseline uses mmap and is denoted as Metall+mmap.
For the SparseStore configuration, we further compared the
performance of two file granularities, 8192 MBs (32 files),
and 256 MBs (1024 files). Figure 8 presents the throughput of
constructing a graph in terms of inserted edges per second
for three versions of Metall across seven UPage sizes.

Figure 8 shows that Metall with UMap outperform the
baseline Metall+mmap by five to 12 times when configured
with 16-256K UPages. Increased UPages size improves per-
formance because it reduces the number of page faults and
increases the bandwidth utilization by transferring larger
chunks of data. We observe performance degradation at the
512KB page size. This could be due to over-fetching unused
data into the physical memory. Specifically, the graph con-
struction benchmark’s benefit from the largest UPage size
is limited due to the benchmark’s irregular memory access
pattern.

We show that using SparseStore brings an additional
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1.17–1.70× improvement compared to the default single-file
data store in UMap for 16, 32, 64K size UPages. For instance,
at 16K UPages, the throughput of graph construction us-
ing Metall+UMap+SparseStore with 1024 files is 1.7× faster
than the default Metall+UMap. At increased UPage sizes,
the performance benefit from Metall+UMap+SparseStore is
diminishing, and it reaches almost similar performance at
the 256K UPage. One reason for the performance advantage
of SparseStore for smaller page sizes is the large number of
small and random I/Os, which tend to increase contention
in the case of a single file [6].

8 RELATED WORK

Kernel-based Approaches DI-MMAP [16] supports scal-
able memory-mapped I/O on fast storage by combining a
loadable kernel module with a runtime to improve page
eviction and TLB performance. Several modifications to the
Linux kernel are proposed in [17] based on their anal-
ysis of the memory management overhead in the Linux
virtual memory subsystem for handling memory-mapped
I/O. They conclude that kernel-based paging will prevent
applications to exploit fast storage. FastMap [6] identifies
contention on tree lock as the main bottleneck for scalability
in mmap and proposes per-file and per-core data structures
in the kernel for optimizing memory-mapped I/O for fast
storage devices. Several filesystems, e.g., NOVA [18] and
SplitFS [19], are proposed for fast storage and persistent-
memory. Also targeting persistent memory, Kuco [20] com-
bines tasks in the kernel with offloaded tasks in userspace to
improve the scalability of filesystems. These filesystems can
be leveraged in UMap for accessing file-backed data stores.
However, making them available on the HPC system is not
possible for most HPC end-users, using a facility-defined
standard system software installation. Our approach aims
to enable high-scalability with the maximum configuration
flexibility in userspace. However, a userspace service has
limited information and higher overhead compared to the
kernel, which is a design tradeoff.

Remote DataStores Many projects have explored remote
memory as a way to extend memory capacity based on
need. Infiniswap [21] provides a kernel extension to enable
transparent remote paging without application modifica-
tions. Hailstorm [22] supports a network-attached database
deployed on a storage pool. These approaches require ker-
nel modifications and specific hardware. Our extension of
RemoteStore in UMap provides a way for fast prototyping
system changes with minimum dependence on hardware
and kernel.

User-level services have been proposed for file systems
and paging services. UnifyFS [23] provides a user-level
burst buffer file system based on node-local large capacity
persistent memory. Co-Pager [24] also provides a user-space
paging service with support from a kernel module to reduce
the overhead of accessing NVM. Our approach is completely
implemented in user-space without any kernel modules and
we target to support a variety of backing storage, including
NVM and others.

Caching and Data placement are essential for optimiz-
ing the performance of memory mapping. Datastores are
often placed in a slower tier in the memory hierarchy while

good performance requires high hit rates on the fast tier, i.e.,
the in-DRAM cache. Data placement has been extensively
studied for heterogeneous memory systems composed of
fast and slow tiers. Xmem [25] characterizes pages based on
three access patterns They optimize the placement of pages
into fast and slow tiers of a memory system based on their
predicted performance gains. Cache partitioning [26], [27],
[28], [29] is often proposed for processor’s shared caches
to avoid the interference in multi-program workloads that
exhibit different memory access patterns. [29] reconfigure
the cache partition using reuse distance to predict cache
miss rate at different cache partitions. Many of these op-
timizations can be supported through configurability in the
caching policies in UMap.

9 CONCLUSIONS

In this work, we prioritize scalability and extensibility as
the main design principles to support memory mapping
in userspace for applications on exascale compute nodes.
We present UMap, a userspace memory mapping service
that requires no modifications to the kernel or new ker-
nel modules to support fine-grained configuration control.
New types of data stores can be easily extended in UMap
through the DataStore abstraction. With decoupled queue
management, concurrency-aware adaptation, and dynamic
load balancing, UMap supports applications to scale even
at the high CPU concurrency of exascale nodes. We evaluate
UMap in data-intensive applications, including a production
metagenomic classification code. Results show that UMap
can outperform Linux’s mmap at various levels of concur-
rency. In two case studies, we demonstrate the extensibility
of UMap in supporting a new datastore on remote memory
over the network and a SparseStore for use in a persistent
memory allocator.
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