Actual source code: rvector.c

petsc-3.10.0 2018-09-12
Report Typos and Errors

  2: /*
  3:      Provides the interface functions for vector operations that have PetscScalar/PetscReal in the signature
  4:    These are the vector functions the user calls.
  5: */
  6:  #include <petsc/private/vecimpl.h>
  7: static PetscInt VecGetSubVectorSavedStateId = -1;

  9: PETSC_EXTERN PetscErrorCode VecValidValues(Vec vec,PetscInt argnum,PetscBool begin)
 10: {
 11: #if defined(PETSC_USE_DEBUG)
 12:   PetscErrorCode    ierr;
 13:   PetscInt          n,i;
 14:   const PetscScalar *x;

 17: #if defined(PETSC_HAVE_VECCUDA) || defined(PETSC_HAVE_VIENNACL)
 18:   if ((vec->petscnative || vec->ops->getarray) && (vec->valid_GPU_array == PETSC_OFFLOAD_CPU || vec->valid_GPU_array == PETSC_OFFLOAD_BOTH)) {
 19: #else
 20:   if (vec->petscnative || vec->ops->getarray) {
 21: #endif
 22:     VecGetLocalSize(vec,&n);
 23:     VecGetArrayRead(vec,&x);
 24:     for (i=0; i<n; i++) {
 25:       if (begin) {
 26:         if (PetscIsInfOrNanScalar(x[i])) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_FP,"Vec entry at local location %D is not-a-number or infinite at beginning of function: Parameter number %D",i,argnum);
 27:       } else {
 28:         if (PetscIsInfOrNanScalar(x[i])) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_FP,"Vec entry at local location %D is not-a-number or infinite at end of function: Parameter number %D",i,argnum);
 29:       }
 30:     }
 31:     VecRestoreArrayRead(vec,&x);
 32:   }
 33:   return(0);
 34: #else
 35:   return 0;
 36: #endif
 37: }

 39: /*@
 40:    VecMaxPointwiseDivide - Computes the maximum of the componentwise division max = max_i abs(x_i/y_i).

 42:    Logically Collective on Vec

 44:    Input Parameters:
 45: .  x, y  - the vectors

 47:    Output Parameter:
 48: .  max - the result

 50:    Level: advanced

 52:    Notes:
 53:     x and y may be the same vector
 54:           if a particular y_i is zero, it is treated as 1 in the above formula

 56: .seealso: VecPointwiseDivide(), VecPointwiseMult(), VecPointwiseMax(), VecPointwiseMin(), VecPointwiseMaxAbs()
 57: @*/
 58: PetscErrorCode  VecMaxPointwiseDivide(Vec x,Vec y,PetscReal *max)
 59: {

 69:   VecCheckSameSize(x,1,y,2);
 70:   (*x->ops->maxpointwisedivide)(x,y,max);
 71:   return(0);
 72: }

 74: /*@
 75:    VecDot - Computes the vector dot product.

 77:    Collective on Vec

 79:    Input Parameters:
 80: .  x, y - the vectors

 82:    Output Parameter:
 83: .  val - the dot product

 85:    Performance Issues:
 86: $    per-processor memory bandwidth
 87: $    interprocessor latency
 88: $    work load inbalance that causes certain processes to arrive much earlier than others

 90:    Notes for Users of Complex Numbers:
 91:    For complex vectors, VecDot() computes
 92: $     val = (x,y) = y^H x,
 93:    where y^H denotes the conjugate transpose of y. Note that this corresponds to the usual "mathematicians" complex
 94:    inner product where the SECOND argument gets the complex conjugate. Since the BLASdot() complex conjugates the first
 95:    first argument we call the BLASdot() with the arguments reversed.

 97:    Use VecTDot() for the indefinite form
 98: $     val = (x,y) = y^T x,
 99:    where y^T denotes the transpose of y.

101:    Level: intermediate

103:    Concepts: inner product
104:    Concepts: vector^inner product

106: .seealso: VecMDot(), VecTDot(), VecNorm(), VecDotBegin(), VecDotEnd(), VecDotRealPart()
107: @*/
108: PetscErrorCode  VecDot(Vec x,Vec y,PetscScalar *val)
109: {

119:   VecCheckSameSize(x,1,y,2);

121:   PetscLogEventBegin(VEC_Dot,x,y,0,0);
122:   (*x->ops->dot)(x,y,val);
123:   PetscLogEventEnd(VEC_Dot,x,y,0,0);
124:   return(0);
125: }

127: /*@
128:    VecDotRealPart - Computes the real part of the vector dot product.

130:    Collective on Vec

132:    Input Parameters:
133: .  x, y - the vectors

135:    Output Parameter:
136: .  val - the real part of the dot product;

138:    Performance Issues:
139: $    per-processor memory bandwidth
140: $    interprocessor latency
141: $    work load inbalance that causes certain processes to arrive much earlier than others

143:    Notes for Users of Complex Numbers:
144:      See VecDot() for more details on the definition of the dot product for complex numbers

146:      For real numbers this returns the same value as VecDot()

148:      For complex numbers in C^n (that is a vector of n components with a complex number for each component) this is equal to the usual real dot product on the
149:      the space R^{2n} (that is a vector of 2n components with the real or imaginary part of the complex numbers for components)

151:    Developer Note: This is not currently optimized to compute only the real part of the dot product.

153:    Level: intermediate

155:    Concepts: inner product
156:    Concepts: vector^inner product

158: .seealso: VecMDot(), VecTDot(), VecNorm(), VecDotBegin(), VecDotEnd(), VecDot(), VecDotNorm2()
159: @*/
160: PetscErrorCode  VecDotRealPart(Vec x,Vec y,PetscReal *val)
161: {
163:   PetscScalar    fdot;

166:   VecDot(x,y,&fdot);
167:   *val = PetscRealPart(fdot);
168:   return(0);
169: }

171: /*@
172:    VecNorm  - Computes the vector norm.

174:    Collective on Vec

176:    Input Parameters:
177: +  x - the vector
178: -  type - one of NORM_1, NORM_2, NORM_INFINITY.  Also available
179:           NORM_1_AND_2, which computes both norms and stores them
180:           in a two element array.

182:    Output Parameter:
183: .  val - the norm

185:    Notes:
186: $     NORM_1 denotes sum_i |x_i|
187: $     NORM_2 denotes sqrt(sum_i |x_i|^2)
188: $     NORM_INFINITY denotes max_i |x_i|

190:       For complex numbers NORM_1 will return the traditional 1 norm of the 2 norm of the complex numbers; that is the 1
191:       norm of the absolutely values of the complex entries. In PETSc 3.6 and earlier releases it returned the 1 norm of
192:       the 1 norm of the complex entries (what is returned by the BLAS routine asum()). Both are valid norms but most
193:       people expect the former.

195:    Level: intermediate

197:    Performance Issues:
198: $    per-processor memory bandwidth
199: $    interprocessor latency
200: $    work load inbalance that causes certain processes to arrive much earlier than others

202:    Concepts: norm
203:    Concepts: vector^norm

205: .seealso: VecDot(), VecTDot(), VecNorm(), VecDotBegin(), VecDotEnd(), VecNormAvailable(),
206:           VecNormBegin(), VecNormEnd()

208: @*/
209: PetscErrorCode  VecNorm(Vec x,NormType type,PetscReal *val)
210: {
211:   PetscBool      flg;


219:   /*
220:    * Cached data?
221:    */
222:   if (type!=NORM_1_AND_2) {
223:     PetscObjectComposedDataGetReal((PetscObject)x,NormIds[type],*val,flg);
224:     if (flg) return(0);
225:   }
226:   PetscLogEventBegin(VEC_Norm,x,0,0,0);
227:   (*x->ops->norm)(x,type,val);
228:   PetscLogEventEnd(VEC_Norm,x,0,0,0);

230:   if (type!=NORM_1_AND_2) {
231:     PetscObjectComposedDataSetReal((PetscObject)x,NormIds[type],*val);
232:   }
233:   return(0);
234: }

236: /*@
237:    VecNormAvailable  - Returns the vector norm if it is already known.

239:    Not Collective

241:    Input Parameters:
242: +  x - the vector
243: -  type - one of NORM_1, NORM_2, NORM_INFINITY.  Also available
244:           NORM_1_AND_2, which computes both norms and stores them
245:           in a two element array.

247:    Output Parameter:
248: +  available - PETSC_TRUE if the val returned is valid
249: -  val - the norm

251:    Notes:
252: $     NORM_1 denotes sum_i |x_i|
253: $     NORM_2 denotes sqrt(sum_i (x_i)^2)
254: $     NORM_INFINITY denotes max_i |x_i|

256:    Level: intermediate

258:    Performance Issues:
259: $    per-processor memory bandwidth
260: $    interprocessor latency
261: $    work load inbalance that causes certain processes to arrive much earlier than others

263:    Compile Option:
264:    PETSC_HAVE_SLOW_BLAS_NORM2 will cause a C (loop unrolled) version of the norm to be used, rather
265:  than the BLAS. This should probably only be used when one is using the FORTRAN BLAS routines
266:  (as opposed to vendor provided) because the FORTRAN BLAS NRM2() routine is very slow.

268:    Concepts: norm
269:    Concepts: vector^norm

271: .seealso: VecDot(), VecTDot(), VecNorm(), VecDotBegin(), VecDotEnd(), VecNorm()
272:           VecNormBegin(), VecNormEnd()

274: @*/
275: PetscErrorCode  VecNormAvailable(Vec x,NormType type,PetscBool  *available,PetscReal *val)
276: {


284:   *available = PETSC_FALSE;
285:   if (type!=NORM_1_AND_2) {
286:     PetscObjectComposedDataGetReal((PetscObject)x,NormIds[type],*val,*available);
287:   }
288:   return(0);
289: }

291: /*@
292:    VecNormalize - Normalizes a vector by 2-norm.

294:    Collective on Vec

296:    Input Parameters:
297: +  x - the vector

299:    Output Parameter:
300: .  x - the normalized vector
301: -  val - the vector norm before normalization

303:    Level: intermediate

305:    Concepts: vector^normalizing
306:    Concepts: normalizing^vector

308: @*/
309: PetscErrorCode  VecNormalize(Vec x,PetscReal *val)
310: {
312:   PetscReal      norm;

317:   PetscLogEventBegin(VEC_Normalize,x,0,0,0);
318:   VecNorm(x,NORM_2,&norm);
319:   if (norm == 0.0) {
320:     PetscInfo(x,"Vector of zero norm can not be normalized; Returning only the zero norm\n");
321:   } else if (norm != 1.0) {
322:     PetscScalar tmp = 1.0/norm;
323:     VecScale(x,tmp);
324:   }
325:   if (val) *val = norm;
326:   PetscLogEventEnd(VEC_Normalize,x,0,0,0);
327:   return(0);
328: }

330: /*@C
331:    VecMax - Determines the vector component with maximum real part and its location.

333:    Collective on Vec

335:    Input Parameter:
336: .  x - the vector

338:    Output Parameters:
339: +  p - the location of val (pass NULL if you don't want this)
340: -  val - the maximum component

342:    Notes:
343:    Returns the value PETSC_MIN_REAL and p = -1 if the vector is of length 0.

345:    Returns the smallest index with the maximum value
346:    Level: intermediate

348:    Concepts: maximum^of vector
349:    Concepts: vector^maximum value

351: .seealso: VecNorm(), VecMin()
352: @*/
353: PetscErrorCode  VecMax(Vec x,PetscInt *p,PetscReal *val)
354: {

361:   PetscLogEventBegin(VEC_Max,x,0,0,0);
362:   (*x->ops->max)(x,p,val);
363:   PetscLogEventEnd(VEC_Max,x,0,0,0);
364:   return(0);
365: }

367: /*@C
368:    VecMin - Determines the vector component with minimum real part and its location.

370:    Collective on Vec

372:    Input Parameters:
373: .  x - the vector

375:    Output Parameter:
376: +  p - the location of val (pass NULL if you don't want this location)
377: -  val - the minimum component

379:    Level: intermediate

381:    Notes:
382:    Returns the value PETSC_MAX_REAL and p = -1 if the vector is of length 0.

384:    This returns the smallest index with the minumum value

386:    Concepts: minimum^of vector
387:    Concepts: vector^minimum entry

389: .seealso: VecMax()
390: @*/
391: PetscErrorCode  VecMin(Vec x,PetscInt *p,PetscReal *val)
392: {

399:   PetscLogEventBegin(VEC_Min,x,0,0,0);
400:   (*x->ops->min)(x,p,val);
401:   PetscLogEventEnd(VEC_Min,x,0,0,0);
402:   return(0);
403: }

405: /*@
406:    VecTDot - Computes an indefinite vector dot product. That is, this
407:    routine does NOT use the complex conjugate.

409:    Collective on Vec

411:    Input Parameters:
412: .  x, y - the vectors

414:    Output Parameter:
415: .  val - the dot product

417:    Notes for Users of Complex Numbers:
418:    For complex vectors, VecTDot() computes the indefinite form
419: $     val = (x,y) = y^T x,
420:    where y^T denotes the transpose of y.

422:    Use VecDot() for the inner product
423: $     val = (x,y) = y^H x,
424:    where y^H denotes the conjugate transpose of y.

426:    Level: intermediate

428:    Concepts: inner product^non-Hermitian
429:    Concepts: vector^inner product
430:    Concepts: non-Hermitian inner product

432: .seealso: VecDot(), VecMTDot()
433: @*/
434: PetscErrorCode  VecTDot(Vec x,Vec y,PetscScalar *val)
435: {

445:   VecCheckSameSize(x,1,y,2);

447:   PetscLogEventBegin(VEC_TDot,x,y,0,0);
448:   (*x->ops->tdot)(x,y,val);
449:   PetscLogEventEnd(VEC_TDot,x,y,0,0);
450:   return(0);
451: }

453: /*@
454:    VecScale - Scales a vector.

456:    Not collective on Vec

458:    Input Parameters:
459: +  x - the vector
460: -  alpha - the scalar

462:    Output Parameter:
463: .  x - the scaled vector

465:    Note:
466:    For a vector with n components, VecScale() computes
467: $      x[i] = alpha * x[i], for i=1,...,n.

469:    Level: intermediate

471:    Concepts: vector^scaling
472:    Concepts: scaling^vector

474: @*/
475: PetscErrorCode  VecScale(Vec x, PetscScalar alpha)
476: {
477:   PetscReal      norms[4] = {0.0,0.0,0.0, 0.0};
478:   PetscBool      flgs[4];
480:   PetscInt       i;

485:   if (x->stash.insertmode != NOT_SET_VALUES) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled vector");
486:   PetscLogEventBegin(VEC_Scale,x,0,0,0);
487:   if (alpha != (PetscScalar)1.0) {
488:     /* get current stashed norms */
489:     for (i=0; i<4; i++) {
490:       PetscObjectComposedDataGetReal((PetscObject)x,NormIds[i],norms[i],flgs[i]);
491:     }
492:     (*x->ops->scale)(x,alpha);
493:     PetscObjectStateIncrease((PetscObject)x);
494:     /* put the scaled stashed norms back into the Vec */
495:     for (i=0; i<4; i++) {
496:       if (flgs[i]) {
497:         PetscObjectComposedDataSetReal((PetscObject)x,NormIds[i],PetscAbsScalar(alpha)*norms[i]);
498:       }
499:     }
500:   }
501:   PetscLogEventEnd(VEC_Scale,x,0,0,0);
502:   return(0);
503: }

505: /*@
506:    VecSet - Sets all components of a vector to a single scalar value.

508:    Logically Collective on Vec

510:    Input Parameters:
511: +  x  - the vector
512: -  alpha - the scalar

514:    Output Parameter:
515: .  x  - the vector

517:    Note:
518:    For a vector of dimension n, VecSet() computes
519: $     x[i] = alpha, for i=1,...,n,
520:    so that all vector entries then equal the identical
521:    scalar value, alpha.  Use the more general routine
522:    VecSetValues() to set different vector entries.

524:    You CANNOT call this after you have called VecSetValues() but before you call
525:    VecAssemblyBegin/End().

527:    Level: beginner

529: .seealso VecSetValues(), VecSetValuesBlocked(), VecSetRandom()

531:    Concepts: vector^setting to constant

533: @*/
534: PetscErrorCode  VecSet(Vec x,PetscScalar alpha)
535: {
536:   PetscReal      val;

542:   if (x->stash.insertmode != NOT_SET_VALUES) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"You cannot call this after you have called VecSetValues() but\n before you have called VecAssemblyBegin/End()");
544:   VecLocked(x,1);

546:   PetscLogEventBegin(VEC_Set,x,0,0,0);
547:   (*x->ops->set)(x,alpha);
548:   PetscLogEventEnd(VEC_Set,x,0,0,0);
549:   PetscObjectStateIncrease((PetscObject)x);

551:   /*  norms can be simply set (if |alpha|*N not too large) */
552:   val  = PetscAbsScalar(alpha);
553:   if (x->map->N == 0) {
554:     PetscObjectComposedDataSetReal((PetscObject)x,NormIds[NORM_1],0.0l);
555:     PetscObjectComposedDataSetReal((PetscObject)x,NormIds[NORM_INFINITY],0.0);
556:     PetscObjectComposedDataSetReal((PetscObject)x,NormIds[NORM_2],0.0);
557:     PetscObjectComposedDataSetReal((PetscObject)x,NormIds[NORM_FROBENIUS],0.0);
558:   } else if (val > PETSC_MAX_REAL/x->map->N) {
559:     PetscObjectComposedDataSetReal((PetscObject)x,NormIds[NORM_INFINITY],val);
560:   } else {
561:     PetscObjectComposedDataSetReal((PetscObject)x,NormIds[NORM_1],x->map->N * val);
562:     PetscObjectComposedDataSetReal((PetscObject)x,NormIds[NORM_INFINITY],val);
563:     val  = PetscSqrtReal((PetscReal)x->map->N) * val;
564:     PetscObjectComposedDataSetReal((PetscObject)x,NormIds[NORM_2],val);
565:     PetscObjectComposedDataSetReal((PetscObject)x,NormIds[NORM_FROBENIUS],val);
566:   }
567:   return(0);
568: }


571: /*@
572:    VecAXPY - Computes y = alpha x + y.

574:    Logically Collective on Vec

576:    Input Parameters:
577: +  alpha - the scalar
578: -  x, y  - the vectors

580:    Output Parameter:
581: .  y - output vector

583:    Level: intermediate

585:    Notes:
586:     x and y MUST be different vectors

588:    Concepts: vector^BLAS
589:    Concepts: BLAS

591: .seealso: VecAYPX(), VecMAXPY(), VecWAXPY()
592: @*/
593: PetscErrorCode  VecAXPY(Vec y,PetscScalar alpha,Vec x)
594: {

603:   VecCheckSameSize(x,1,y,3);
604:   if (x == y) SETERRQ(PetscObjectComm((PetscObject)x),PETSC_ERR_ARG_IDN,"x and y cannot be the same vector");
606:   VecLocked(y,1);

608:   VecLockPush(x);
609:   PetscLogEventBegin(VEC_AXPY,x,y,0,0);
610:   (*y->ops->axpy)(y,alpha,x);
611:   PetscLogEventEnd(VEC_AXPY,x,y,0,0);
612:   VecLockPop(x);
613:   PetscObjectStateIncrease((PetscObject)y);
614:   return(0);
615: }

617: /*@
618:    VecAXPBY - Computes y = alpha x + beta y.

620:    Logically Collective on Vec

622:    Input Parameters:
623: +  alpha,beta - the scalars
624: -  x, y  - the vectors

626:    Output Parameter:
627: .  y - output vector

629:    Level: intermediate

631:    Notes:
632:     x and y MUST be different vectors

634:    Concepts: BLAS
635:    Concepts: vector^BLAS

637: .seealso: VecAYPX(), VecMAXPY(), VecWAXPY(), VecAXPY()
638: @*/
639: PetscErrorCode  VecAXPBY(Vec y,PetscScalar alpha,PetscScalar beta,Vec x)
640: {

649:   VecCheckSameSize(x,1,y,4);
650:   if (x == y) SETERRQ(PetscObjectComm((PetscObject)x),PETSC_ERR_ARG_IDN,"x and y cannot be the same vector");

654:   PetscLogEventBegin(VEC_AXPY,x,y,0,0);
655:   (*y->ops->axpby)(y,alpha,beta,x);
656:   PetscLogEventEnd(VEC_AXPY,x,y,0,0);
657:   PetscObjectStateIncrease((PetscObject)y);
658:   return(0);
659: }

661: /*@
662:    VecAXPBYPCZ - Computes z = alpha x + beta y + gamma z

664:    Logically Collective on Vec

666:    Input Parameters:
667: +  alpha,beta, gamma - the scalars
668: -  x, y, z  - the vectors

670:    Output Parameter:
671: .  z - output vector

673:    Level: intermediate

675:    Notes:
676:     x, y and z must be different vectors

678:    Developer Note:   alpha = 1 or gamma = 1 or gamma = 0.0 are handled as special cases

680:    Concepts: BLAS
681:    Concepts: vector^BLAS

683: .seealso: VecAYPX(), VecMAXPY(), VecWAXPY(), VecAXPY()
684: @*/
685: PetscErrorCode  VecAXPBYPCZ(Vec z,PetscScalar alpha,PetscScalar beta,PetscScalar gamma,Vec x,Vec y)
686: {

698:   VecCheckSameSize(x,1,y,5);
699:   VecCheckSameSize(x,1,z,6);
700:   if (x == y || x == z) SETERRQ(PetscObjectComm((PetscObject)x),PETSC_ERR_ARG_IDN,"x, y, and z must be different vectors");
701:   if (y == z) SETERRQ(PetscObjectComm((PetscObject)y),PETSC_ERR_ARG_IDN,"x, y, and z must be different vectors");

706:   PetscLogEventBegin(VEC_AXPBYPCZ,x,y,z,0);
707:   (*y->ops->axpbypcz)(z,alpha,beta,gamma,x,y);
708:   PetscLogEventEnd(VEC_AXPBYPCZ,x,y,z,0);
709:   PetscObjectStateIncrease((PetscObject)z);
710:   return(0);
711: }

713: /*@
714:    VecAYPX - Computes y = x + alpha y.

716:    Logically Collective on Vec

718:    Input Parameters:
719: +  alpha - the scalar
720: -  x, y  - the vectors

722:    Output Parameter:
723: .  y - output vector

725:    Level: intermediate

727:    Notes:
728:     x and y MUST be different vectors

730:    Concepts: vector^BLAS
731:    Concepts: BLAS

733: .seealso: VecAXPY(), VecWAXPY()
734: @*/
735: PetscErrorCode  VecAYPX(Vec y,PetscScalar alpha,Vec x)
736: {

745:   VecCheckSameSize(x,1,y,3);
746:   if (x == y) SETERRQ(PetscObjectComm((PetscObject)x),PETSC_ERR_ARG_IDN,"x and y must be different vectors");

749:   PetscLogEventBegin(VEC_AYPX,x,y,0,0);
750:    (*y->ops->aypx)(y,alpha,x);
751:   PetscLogEventEnd(VEC_AYPX,x,y,0,0);
752:   PetscObjectStateIncrease((PetscObject)y);
753:   return(0);
754: }


757: /*@
758:    VecWAXPY - Computes w = alpha x + y.

760:    Logically Collective on Vec

762:    Input Parameters:
763: +  alpha - the scalar
764: -  x, y  - the vectors

766:    Output Parameter:
767: .  w - the result

769:    Level: intermediate

771:    Notes:
772:     w cannot be either x or y, but x and y can be the same

774:    Concepts: vector^BLAS
775:    Concepts: BLAS

777: .seealso: VecAXPY(), VecAYPX(), VecAXPBY()
778: @*/
779: PetscErrorCode  VecWAXPY(Vec w,PetscScalar alpha,Vec x,Vec y)
780: {

792:   VecCheckSameSize(x,3,y,4);
793:   VecCheckSameSize(x,3,w,1);
794:   if (w == y) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"Result vector w cannot be same as input vector y, suggest VecAXPY()");
795:   if (w == x) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"Result vector w cannot be same as input vector x, suggest VecAYPX()");

798:   PetscLogEventBegin(VEC_WAXPY,x,y,w,0);
799:    (*w->ops->waxpy)(w,alpha,x,y);
800:   PetscLogEventEnd(VEC_WAXPY,x,y,w,0);
801:   PetscObjectStateIncrease((PetscObject)w);
802:   return(0);
803: }


806: /*@C
807:    VecSetValues - Inserts or adds values into certain locations of a vector.

809:    Not Collective

811:    Input Parameters:
812: +  x - vector to insert in
813: .  ni - number of elements to add
814: .  ix - indices where to add
815: .  y - array of values
816: -  iora - either INSERT_VALUES or ADD_VALUES, where
817:    ADD_VALUES adds values to any existing entries, and
818:    INSERT_VALUES replaces existing entries with new values

820:    Notes:
821:    VecSetValues() sets x[ix[i]] = y[i], for i=0,...,ni-1.

823:    Calls to VecSetValues() with the INSERT_VALUES and ADD_VALUES
824:    options cannot be mixed without intervening calls to the assembly
825:    routines.

827:    These values may be cached, so VecAssemblyBegin() and VecAssemblyEnd()
828:    MUST be called after all calls to VecSetValues() have been completed.

830:    VecSetValues() uses 0-based indices in Fortran as well as in C.

832:    If you call VecSetOption(x, VEC_IGNORE_NEGATIVE_INDICES,PETSC_TRUE),
833:    negative indices may be passed in ix. These rows are
834:    simply ignored. This allows easily inserting element load matrices
835:    with homogeneous Dirchlet boundary conditions that you don't want represented
836:    in the vector.

838:    Level: beginner

840:    Concepts: vector^setting values

842: .seealso:  VecAssemblyBegin(), VecAssemblyEnd(), VecSetValuesLocal(),
843:            VecSetValue(), VecSetValuesBlocked(), InsertMode, INSERT_VALUES, ADD_VALUES, VecGetValues()
844: @*/
845: PetscErrorCode  VecSetValues(Vec x,PetscInt ni,const PetscInt ix[],const PetscScalar y[],InsertMode iora)
846: {

851:   if (!ni) return(0);
855:   PetscLogEventBegin(VEC_SetValues,x,0,0,0);
856:   (*x->ops->setvalues)(x,ni,ix,y,iora);
857:   PetscLogEventEnd(VEC_SetValues,x,0,0,0);
858:   PetscObjectStateIncrease((PetscObject)x);
859:   return(0);
860: }

862: /*@
863:    VecGetValues - Gets values from certain locations of a vector. Currently
864:           can only get values on the same processor

866:     Not Collective

868:    Input Parameters:
869: +  x - vector to get values from
870: .  ni - number of elements to get
871: -  ix - indices where to get them from (in global 1d numbering)

873:    Output Parameter:
874: .   y - array of values

876:    Notes:
877:    The user provides the allocated array y; it is NOT allocated in this routine

879:    VecGetValues() gets y[i] = x[ix[i]], for i=0,...,ni-1.

881:    VecAssemblyBegin() and VecAssemblyEnd()  MUST be called before calling this

883:    VecGetValues() uses 0-based indices in Fortran as well as in C.

885:    If you call VecSetOption(x, VEC_IGNORE_NEGATIVE_INDICES,PETSC_TRUE),
886:    negative indices may be passed in ix. These rows are
887:    simply ignored.

889:    Level: beginner

891:    Concepts: vector^getting values

893: .seealso:  VecAssemblyBegin(), VecAssemblyEnd(), VecSetValues()
894: @*/
895: PetscErrorCode  VecGetValues(Vec x,PetscInt ni,const PetscInt ix[],PetscScalar y[])
896: {

901:   if (!ni) return(0);
905:   (*x->ops->getvalues)(x,ni,ix,y);
906:   return(0);
907: }

909: /*@C
910:    VecSetValuesBlocked - Inserts or adds blocks of values into certain locations of a vector.

912:    Not Collective

914:    Input Parameters:
915: +  x - vector to insert in
916: .  ni - number of blocks to add
917: .  ix - indices where to add in block count, rather than element count
918: .  y - array of values
919: -  iora - either INSERT_VALUES or ADD_VALUES, where
920:    ADD_VALUES adds values to any existing entries, and
921:    INSERT_VALUES replaces existing entries with new values

923:    Notes:
924:    VecSetValuesBlocked() sets x[bs*ix[i]+j] = y[bs*i+j],
925:    for j=0,...,bs-1, for i=0,...,ni-1. where bs was set with VecSetBlockSize().

927:    Calls to VecSetValuesBlocked() with the INSERT_VALUES and ADD_VALUES
928:    options cannot be mixed without intervening calls to the assembly
929:    routines.

931:    These values may be cached, so VecAssemblyBegin() and VecAssemblyEnd()
932:    MUST be called after all calls to VecSetValuesBlocked() have been completed.

934:    VecSetValuesBlocked() uses 0-based indices in Fortran as well as in C.

936:    Negative indices may be passed in ix, these rows are
937:    simply ignored. This allows easily inserting element load matrices
938:    with homogeneous Dirchlet boundary conditions that you don't want represented
939:    in the vector.

941:    Level: intermediate

943:    Concepts: vector^setting values blocked

945: .seealso:  VecAssemblyBegin(), VecAssemblyEnd(), VecSetValuesBlockedLocal(),
946:            VecSetValues()
947: @*/
948: PetscErrorCode  VecSetValuesBlocked(Vec x,PetscInt ni,const PetscInt ix[],const PetscScalar y[],InsertMode iora)
949: {

957:   PetscLogEventBegin(VEC_SetValues,x,0,0,0);
958:   (*x->ops->setvaluesblocked)(x,ni,ix,y,iora);
959:   PetscLogEventEnd(VEC_SetValues,x,0,0,0);
960:   PetscObjectStateIncrease((PetscObject)x);
961:   return(0);
962: }


965: /*@C
966:    VecSetValuesLocal - Inserts or adds values into certain locations of a vector,
967:    using a local ordering of the nodes.

969:    Not Collective

971:    Input Parameters:
972: +  x - vector to insert in
973: .  ni - number of elements to add
974: .  ix - indices where to add
975: .  y - array of values
976: -  iora - either INSERT_VALUES or ADD_VALUES, where
977:    ADD_VALUES adds values to any existing entries, and
978:    INSERT_VALUES replaces existing entries with new values

980:    Level: intermediate

982:    Notes:
983:    VecSetValuesLocal() sets x[ix[i]] = y[i], for i=0,...,ni-1.

985:    Calls to VecSetValues() with the INSERT_VALUES and ADD_VALUES
986:    options cannot be mixed without intervening calls to the assembly
987:    routines.

989:    These values may be cached, so VecAssemblyBegin() and VecAssemblyEnd()
990:    MUST be called after all calls to VecSetValuesLocal() have been completed.

992:    VecSetValuesLocal() uses 0-based indices in Fortran as well as in C.

994:    Concepts: vector^setting values with local numbering

996: .seealso:  VecAssemblyBegin(), VecAssemblyEnd(), VecSetValues(), VecSetLocalToGlobalMapping(),
997:            VecSetValuesBlockedLocal()
998: @*/
999: PetscErrorCode  VecSetValuesLocal(Vec x,PetscInt ni,const PetscInt ix[],const PetscScalar y[],InsertMode iora)
1000: {
1002:   PetscInt       lixp[128],*lix = lixp;

1006:   if (!ni) return(0);

1011:   PetscLogEventBegin(VEC_SetValues,x,0,0,0);
1012:   if (!x->ops->setvalueslocal) {
1013:     if (!x->map->mapping) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Local to global never set with VecSetLocalToGlobalMapping()");
1014:     if (ni > 128) {
1015:       PetscMalloc1(ni,&lix);
1016:     }
1017:     ISLocalToGlobalMappingApply(x->map->mapping,ni,(PetscInt*)ix,lix);
1018:     (*x->ops->setvalues)(x,ni,lix,y,iora);
1019:     if (ni > 128) {
1020:       PetscFree(lix);
1021:     }
1022:   } else {
1023:     (*x->ops->setvalueslocal)(x,ni,ix,y,iora);
1024:   }
1025:   PetscLogEventEnd(VEC_SetValues,x,0,0,0);
1026:   PetscObjectStateIncrease((PetscObject)x);
1027:   return(0);
1028: }

1030: /*@
1031:    VecSetValuesBlockedLocal - Inserts or adds values into certain locations of a vector,
1032:    using a local ordering of the nodes.

1034:    Not Collective

1036:    Input Parameters:
1037: +  x - vector to insert in
1038: .  ni - number of blocks to add
1039: .  ix - indices where to add in block count, not element count
1040: .  y - array of values
1041: -  iora - either INSERT_VALUES or ADD_VALUES, where
1042:    ADD_VALUES adds values to any existing entries, and
1043:    INSERT_VALUES replaces existing entries with new values

1045:    Level: intermediate

1047:    Notes:
1048:    VecSetValuesBlockedLocal() sets x[bs*ix[i]+j] = y[bs*i+j],
1049:    for j=0,..bs-1, for i=0,...,ni-1, where bs has been set with VecSetBlockSize().

1051:    Calls to VecSetValuesBlockedLocal() with the INSERT_VALUES and ADD_VALUES
1052:    options cannot be mixed without intervening calls to the assembly
1053:    routines.

1055:    These values may be cached, so VecAssemblyBegin() and VecAssemblyEnd()
1056:    MUST be called after all calls to VecSetValuesBlockedLocal() have been completed.

1058:    VecSetValuesBlockedLocal() uses 0-based indices in Fortran as well as in C.


1061:    Concepts: vector^setting values blocked with local numbering

1063: .seealso:  VecAssemblyBegin(), VecAssemblyEnd(), VecSetValues(), VecSetValuesBlocked(),
1064:            VecSetLocalToGlobalMapping()
1065: @*/
1066: PetscErrorCode  VecSetValuesBlockedLocal(Vec x,PetscInt ni,const PetscInt ix[],const PetscScalar y[],InsertMode iora)
1067: {
1069:   PetscInt       lixp[128],*lix = lixp;

1076:   if (ni > 128) {
1077:     PetscMalloc1(ni,&lix);
1078:   }

1080:   PetscLogEventBegin(VEC_SetValues,x,0,0,0);
1081:   ISLocalToGlobalMappingApplyBlock(x->map->mapping,ni,(PetscInt*)ix,lix);
1082:   (*x->ops->setvaluesblocked)(x,ni,lix,y,iora);
1083:   PetscLogEventEnd(VEC_SetValues,x,0,0,0);
1084:   if (ni > 128) {
1085:     PetscFree(lix);
1086:   }
1087:   PetscObjectStateIncrease((PetscObject)x);
1088:   return(0);
1089: }

1091: /*@
1092:    VecMTDot - Computes indefinite vector multiple dot products.
1093:    That is, it does NOT use the complex conjugate.

1095:    Collective on Vec

1097:    Input Parameters:
1098: +  x - one vector
1099: .  nv - number of vectors
1100: -  y - array of vectors.  Note that vectors are pointers

1102:    Output Parameter:
1103: .  val - array of the dot products

1105:    Notes for Users of Complex Numbers:
1106:    For complex vectors, VecMTDot() computes the indefinite form
1107: $      val = (x,y) = y^T x,
1108:    where y^T denotes the transpose of y.

1110:    Use VecMDot() for the inner product
1111: $      val = (x,y) = y^H x,
1112:    where y^H denotes the conjugate transpose of y.

1114:    Level: intermediate

1116:    Concepts: inner product^multiple
1117:    Concepts: vector^multiple inner products

1119: .seealso: VecMDot(), VecTDot()
1120: @*/
1121: PetscErrorCode  VecMTDot(Vec x,PetscInt nv,const Vec y[],PetscScalar val[])
1122: {

1133:   VecCheckSameSize(x,1,*y,3);

1135:   PetscLogEventBegin(VEC_MTDot,x,*y,0,0);
1136:   (*x->ops->mtdot)(x,nv,y,val);
1137:   PetscLogEventEnd(VEC_MTDot,x,*y,0,0);
1138:   return(0);
1139: }

1141: /*@
1142:    VecMDot - Computes vector multiple dot products.

1144:    Collective on Vec

1146:    Input Parameters:
1147: +  x - one vector
1148: .  nv - number of vectors
1149: -  y - array of vectors.

1151:    Output Parameter:
1152: .  val - array of the dot products (does not allocate the array)

1154:    Notes for Users of Complex Numbers:
1155:    For complex vectors, VecMDot() computes
1156: $     val = (x,y) = y^H x,
1157:    where y^H denotes the conjugate transpose of y.

1159:    Use VecMTDot() for the indefinite form
1160: $     val = (x,y) = y^T x,
1161:    where y^T denotes the transpose of y.

1163:    Level: intermediate

1165:    Concepts: inner product^multiple
1166:    Concepts: vector^multiple inner products

1168: .seealso: VecMTDot(), VecDot()
1169: @*/
1170: PetscErrorCode  VecMDot(Vec x,PetscInt nv,const Vec y[],PetscScalar val[])
1171: {

1176:   if (!nv) return(0);
1177:   if (nv < 0) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Number of vectors (given %D) cannot be negative",nv);
1184:   VecCheckSameSize(x,1,*y,3);

1186:   PetscLogEventBegin(VEC_MDot,x,*y,0,0);
1187:   (*x->ops->mdot)(x,nv,y,val);
1188:   PetscLogEventEnd(VEC_MDot,x,*y,0,0);
1189:   return(0);
1190: }

1192: /*@
1193:    VecMAXPY - Computes y = y + sum alpha[j] x[j]

1195:    Logically Collective on Vec

1197:    Input Parameters:
1198: +  nv - number of scalars and x-vectors
1199: .  alpha - array of scalars
1200: .  y - one vector
1201: -  x - array of vectors

1203:    Level: intermediate

1205:    Notes:
1206:     y cannot be any of the x vectors

1208:    Concepts: BLAS

1210: .seealso: VecAXPY(), VecWAXPY(), VecAYPX()
1211: @*/
1212: PetscErrorCode  VecMAXPY(Vec y,PetscInt nv,const PetscScalar alpha[],Vec x[])
1213: {
1215:   PetscInt       i;

1219:   if (!nv) return(0);
1220:   if (nv < 0) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Number of vectors (given %D) cannot be negative",nv);
1227:   VecCheckSameSize(y,1,*x,4);

1230:   PetscLogEventBegin(VEC_MAXPY,*x,y,0,0);
1231:   (*y->ops->maxpy)(y,nv,alpha,x);
1232:   PetscLogEventEnd(VEC_MAXPY,*x,y,0,0);
1233:   PetscObjectStateIncrease((PetscObject)y);
1234:   return(0);
1235: }

1237: /*@
1238:    VecGetSubVector - Gets a vector representing part of another vector

1240:    Collective on IS (and Vec if nonlocal entries are needed)

1242:    Input Arguments:
1243: + X - vector from which to extract a subvector
1244: - is - index set representing portion of X to extract

1246:    Output Arguments:
1247: . Y - subvector corresponding to is

1249:    Level: advanced

1251:    Notes:
1252:    The subvector Y should be returned with VecRestoreSubVector().

1254:    This function may return a subvector without making a copy, therefore it is not safe to use the original vector while
1255:    modifying the subvector.  Other non-overlapping subvectors can still be obtained from X using this function.

1257: .seealso: MatCreateSubMatrix()
1258: @*/
1259: PetscErrorCode  VecGetSubVector(Vec X,IS is,Vec *Y)
1260: {
1261:   PetscErrorCode   ierr;
1262:   Vec              Z;

1268:   if (X->ops->getsubvector) {
1269:     (*X->ops->getsubvector)(X,is,&Z);
1270:   } else { /* Default implementation currently does no caching */
1271:     PetscInt  gstart,gend,start;
1272:     PetscBool contiguous,gcontiguous;
1273:     VecGetOwnershipRange(X,&gstart,&gend);
1274:     ISContiguousLocal(is,gstart,gend,&start,&contiguous);
1275:     MPIU_Allreduce(&contiguous,&gcontiguous,1,MPIU_BOOL,MPI_LAND,PetscObjectComm((PetscObject)is));
1276:     if (gcontiguous) { /* We can do a no-copy implementation */
1277:       PetscInt n,N,bs;
1278:       PetscInt state;

1280:       ISGetSize(is,&N);
1281:       ISGetLocalSize(is,&n);
1282:       VecGetBlockSize(X,&bs);
1283:       if (n%bs || bs == 1 || !n) bs = -1; /* Do not decide block size if we do not have to */
1284:       VecLockGet(X,&state);
1285:       if (state) {
1286:         const PetscScalar *x;
1287:         VecGetArrayRead(X,&x);
1288:         VecCreate(PetscObjectComm((PetscObject)X),&Z);
1289:         VecSetType(Z,((PetscObject)X)->type_name);
1290:         VecSetSizes(Z,n,N);
1291:         VecSetBlockSize(Z,bs);
1292:         VecPlaceArray(Z,(PetscScalar*)x+start);
1293:         VecLockPush(Z);
1294:         VecRestoreArrayRead(X,&x);
1295:       } else {
1296:         PetscScalar *x;
1297:         VecGetArray(X,&x);
1298:         VecCreate(PetscObjectComm((PetscObject)X),&Z);
1299:         VecSetType(Z,((PetscObject)X)->type_name);
1300:         VecSetSizes(Z,n,N);
1301:         VecSetBlockSize(Z,bs);
1302:         VecPlaceArray(Z,(PetscScalar*)x+start);
1303:         VecRestoreArray(X,&x);
1304:       }
1305:     } else { /* Have to create a scatter and do a copy */
1306:       VecScatter scatter;
1307:       PetscInt   n,N;
1308:       ISGetLocalSize(is,&n);
1309:       ISGetSize(is,&N);
1310:       VecCreate(PetscObjectComm((PetscObject)is),&Z);
1311:       VecSetSizes(Z,n,N);
1312:       VecSetType(Z,((PetscObject)X)->type_name);
1313:       VecScatterCreate(X,is,Z,NULL,&scatter);
1314:       VecScatterBegin(scatter,X,Z,INSERT_VALUES,SCATTER_FORWARD);
1315:       VecScatterEnd(scatter,X,Z,INSERT_VALUES,SCATTER_FORWARD);
1316:       PetscObjectCompose((PetscObject)Z,"VecGetSubVector_Scatter",(PetscObject)scatter);
1317:       VecScatterDestroy(&scatter);
1318:     }
1319:   }
1320:   /* Record the state when the subvector was gotten so we know whether its values need to be put back */
1321:   if (VecGetSubVectorSavedStateId < 0) {PetscObjectComposedDataRegister(&VecGetSubVectorSavedStateId);}
1322:   PetscObjectComposedDataSetInt((PetscObject)Z,VecGetSubVectorSavedStateId,1);
1323:   *Y   = Z;
1324:   return(0);
1325: }

1327: /*@
1328:    VecRestoreSubVector - Restores a subvector extracted using VecGetSubVector()

1330:    Collective on IS (and Vec if nonlocal entries need to be written)

1332:    Input Arguments:
1333: + X - vector from which subvector was obtained
1334: . is - index set representing the subset of X
1335: - Y - subvector being restored

1337:    Level: advanced

1339: .seealso: VecGetSubVector()
1340: @*/
1341: PetscErrorCode  VecRestoreSubVector(Vec X,IS is,Vec *Y)
1342: {

1350:   if (X->ops->restoresubvector) {
1351:     (*X->ops->restoresubvector)(X,is,Y);
1352:   } else {
1353:     PETSC_UNUSED PetscObjectState dummystate = 0;
1354:     PetscBool valid;
1355:     PetscObjectComposedDataGetInt((PetscObject)*Y,VecGetSubVectorSavedStateId,dummystate,valid);
1356:     if (!valid) {
1357:       VecScatter scatter;

1359:       PetscObjectQuery((PetscObject)*Y,"VecGetSubVector_Scatter",(PetscObject*)&scatter);
1360:       if (scatter) {
1361:         VecScatterBegin(scatter,*Y,X,INSERT_VALUES,SCATTER_REVERSE);
1362:         VecScatterEnd(scatter,*Y,X,INSERT_VALUES,SCATTER_REVERSE);
1363:       }
1364:     }
1365:     VecDestroy(Y);
1366:   }
1367:   return(0);
1368: }

1370: /*@
1371:    VecGetLocalVectorRead - Maps the local portion of a vector into a
1372:    vector.  You must call VecRestoreLocalVectorRead() when the local
1373:    vector is no longer needed.

1375:    Not collective.

1377:    Input parameter:
1378: .  v - The vector for which the local vector is desired.

1380:    Output parameter:
1381: .  w - Upon exit this contains the local vector.

1383:    Level: beginner

1385:    Notes:
1386:    This function is similar to VecGetArrayRead() which maps the local
1387:    portion into a raw pointer.  VecGetLocalVectorRead() is usually
1388:    almost as efficient as VecGetArrayRead() but in certain circumstances
1389:    VecGetLocalVectorRead() can be much more efficient than
1390:    VecGetArrayRead().  This is because the construction of a contiguous
1391:    array representing the vector data required by VecGetArrayRead() can
1392:    be an expensive operation for certain vector types.  For example, for
1393:    GPU vectors VecGetArrayRead() requires that the data between device
1394:    and host is synchronized.

1396:    Unlike VecGetLocalVector(), this routine is not collective and
1397:    preserves cached information.

1399: .seealso: VecRestoreLocalVectorRead(), VecGetLocalVector(), VecGetArrayRead(), VecGetArray()
1400: @*/
1401: PetscErrorCode VecGetLocalVectorRead(Vec v,Vec w)
1402: {
1404:   PetscScalar    *a;

1409:   VecCheckSameLocalSize(v,1,w,2);
1410:   if (v->ops->getlocalvectorread) {
1411:     (*v->ops->getlocalvectorread)(v,w);
1412:   } else {
1413:     VecGetArrayRead(v,(const PetscScalar**)&a);
1414:     VecPlaceArray(w,a);
1415:   }
1416:   return(0);
1417: }

1419: /*@
1420:    VecRestoreLocalVectorRead - Unmaps the local portion of a vector
1421:    previously mapped into a vector using VecGetLocalVectorRead().

1423:    Not collective.

1425:    Input parameter:
1426: .  v - The local portion of this vector was previously mapped into w using VecGetLocalVectorRead().
1427: .  w - The vector into which the local portion of v was mapped.

1429:    Level: beginner

1431: .seealso: VecGetLocalVectorRead(), VecGetLocalVector(), VecGetArrayRead(), VecGetArray()
1432: @*/
1433: PetscErrorCode VecRestoreLocalVectorRead(Vec v,Vec w)
1434: {
1436:   PetscScalar    *a;

1441:   if (v->ops->restorelocalvectorread) {
1442:     (*v->ops->restorelocalvectorread)(v,w);
1443:   } else {
1444:     VecGetArrayRead(w,(const PetscScalar**)&a);
1445:     VecRestoreArrayRead(v,(const PetscScalar**)&a);
1446:     VecResetArray(w);
1447:   }
1448:   return(0);
1449: }

1451: /*@
1452:    VecGetLocalVector - Maps the local portion of a vector into a
1453:    vector.

1455:    Collective on v, not collective on w.

1457:    Input parameter:
1458: .  v - The vector for which the local vector is desired.

1460:    Output parameter:
1461: .  w - Upon exit this contains the local vector.

1463:    Level: beginner

1465:    Notes:
1466:    This function is similar to VecGetArray() which maps the local
1467:    portion into a raw pointer.  VecGetLocalVector() is usually about as
1468:    efficient as VecGetArray() but in certain circumstances
1469:    VecGetLocalVector() can be much more efficient than VecGetArray().
1470:    This is because the construction of a contiguous array representing
1471:    the vector data required by VecGetArray() can be an expensive
1472:    operation for certain vector types.  For example, for GPU vectors
1473:    VecGetArray() requires that the data between device and host is
1474:    synchronized.

1476: .seealso: VecRestoreLocalVector(), VecGetLocalVectorRead(), VecGetArrayRead(), VecGetArray()
1477: @*/
1478: PetscErrorCode VecGetLocalVector(Vec v,Vec w)
1479: {
1481:   PetscScalar    *a;

1486:   VecCheckSameLocalSize(v,1,w,2);
1487:   if (v->ops->getlocalvector) {
1488:     (*v->ops->getlocalvector)(v,w);
1489:   } else {
1490:     VecGetArray(v,&a);
1491:     VecPlaceArray(w,a);
1492:   }
1493:   return(0);
1494: }

1496: /*@
1497:    VecRestoreLocalVector - Unmaps the local portion of a vector
1498:    previously mapped into a vector using VecGetLocalVector().

1500:    Logically collective.

1502:    Input parameter:
1503: .  v - The local portion of this vector was previously mapped into w using VecGetLocalVector().
1504: .  w - The vector into which the local portion of v was mapped.

1506:    Level: beginner

1508: .seealso: VecGetLocalVector(), VecGetLocalVectorRead(), VecRestoreLocalVectorRead(), LocalVectorRead(), VecGetArrayRead(), VecGetArray()
1509: @*/
1510: PetscErrorCode VecRestoreLocalVector(Vec v,Vec w)
1511: {
1513:   PetscScalar    *a;

1518:   if (v->ops->restorelocalvector) {
1519:     (*v->ops->restorelocalvector)(v,w);
1520:   } else {
1521:     VecGetArray(w,&a);
1522:     VecRestoreArray(v,&a);
1523:     VecResetArray(w);
1524:   }
1525:   return(0);
1526: }

1528: /*@C
1529:    VecGetArray - Returns a pointer to a contiguous array that contains this
1530:    processor's portion of the vector data. For the standard PETSc
1531:    vectors, VecGetArray() returns a pointer to the local data array and
1532:    does not use any copies. If the underlying vector data is not stored
1533:    in a contiguous array this routine will copy the data to a contiguous
1534:    array and return a pointer to that. You MUST call VecRestoreArray()
1535:    when you no longer need access to the array.

1537:    Logically Collective on Vec

1539:    Input Parameter:
1540: .  x - the vector

1542:    Output Parameter:
1543: .  a - location to put pointer to the array

1545:    Fortran Note:
1546:    This routine is used differently from Fortran 77
1547: $    Vec         x
1548: $    PetscScalar x_array(1)
1549: $    PetscOffset i_x
1550: $    PetscErrorCode ierr
1551: $       call VecGetArray(x,x_array,i_x,ierr)
1552: $
1553: $   Access first local entry in vector with
1554: $      value = x_array(i_x + 1)
1555: $
1556: $      ...... other code
1557: $       call VecRestoreArray(x,x_array,i_x,ierr)
1558:    For Fortran 90 see VecGetArrayF90()

1560:    See the Fortran chapter of the users manual and
1561:    petsc/src/snes/examples/tutorials/ex5f.F for details.

1563:    Level: beginner

1565:    Concepts: vector^accessing local values

1567: .seealso: VecRestoreArray(), VecGetArrayRead(), VecGetArrays(), VecGetArrayF90(), VecGetArrayReadF90(), VecPlaceArray(), VecGetArray2d(),
1568:           VecGetArrayPair(), VecRestoreArrayPair()
1569: @*/
1570: PetscErrorCode VecGetArray(Vec x,PetscScalar **a)
1571: {
1573: #if defined(PETSC_HAVE_VIENNACL)
1574:   PetscBool      is_viennacltype = PETSC_FALSE;
1575: #endif

1579:   VecLocked(x,1);
1580:   if (x->petscnative) {
1581: #if defined(PETSC_HAVE_VIENNACL) || defined(PETSC_HAVE_VECCUDA)
1582:     if (x->valid_GPU_array == PETSC_OFFLOAD_GPU) {
1583: #if defined(PETSC_HAVE_VIENNACL)
1584:       PetscObjectTypeCompareAny((PetscObject)x,&is_viennacltype,VECSEQVIENNACL,VECMPIVIENNACL,VECVIENNACL,"");
1585:       if (is_viennacltype) {
1586:         VecViennaCLCopyFromGPU(x);
1587:       } else
1588: #endif
1589:       {
1590: #if defined(PETSC_HAVE_VECCUDA)
1591:         VecCUDACopyFromGPU(x);
1592: #endif
1593:       }
1594:     } else if (x->valid_GPU_array == PETSC_OFFLOAD_UNALLOCATED) {
1595: #if defined(PETSC_HAVE_VIENNACL)
1596:       PetscObjectTypeCompareAny((PetscObject)x,&is_viennacltype,VECSEQVIENNACL,VECMPIVIENNACL,VECVIENNACL,"");
1597:       if (is_viennacltype) {
1598:         VecViennaCLAllocateCheckHost(x);
1599:       } else
1600: #endif
1601:       {
1602: #if defined(PETSC_HAVE_VECCUDA)
1603:         VecCUDAAllocateCheckHost(x);
1604: #endif
1605:       }
1606:     }
1607: #endif
1608:     *a = *((PetscScalar**)x->data);
1609:   } else {
1610:     (*x->ops->getarray)(x,a);
1611:   }
1612:   return(0);
1613: }

1615: /*@C
1616:    VecGetArrayRead - Get read-only pointer to contiguous array containing this processor's portion of the vector data.

1618:    Not Collective

1620:    Input Parameters:
1621: .  x - the vector

1623:    Output Parameter:
1624: .  a - the array

1626:    Level: beginner

1628:    Notes:
1629:    The array must be returned using a matching call to VecRestoreArrayRead().

1631:    Unlike VecGetArray(), this routine is not collective and preserves cached information like vector norms.

1633:    Standard PETSc vectors use contiguous storage so that this routine does not perform a copy.  Other vector
1634:    implementations may require a copy, but must such implementations should cache the contiguous representation so that
1635:    only one copy is performed when this routine is called multiple times in sequence.

1637: .seealso: VecGetArray(), VecRestoreArray(), VecGetArrayPair(), VecRestoreArrayPair()
1638: @*/
1639: PetscErrorCode VecGetArrayRead(Vec x,const PetscScalar **a)
1640: {
1642: #if defined(PETSC_HAVE_VIENNACL)
1643:   PetscBool      is_viennacltype = PETSC_FALSE;
1644: #endif

1648:   if (x->petscnative) {
1649: #if defined(PETSC_HAVE_VIENNACL) || defined(PETSC_HAVE_VECCUDA)
1650:     if (x->valid_GPU_array == PETSC_OFFLOAD_GPU) {
1651: #if defined(PETSC_HAVE_VIENNACL)
1652:       PetscObjectTypeCompareAny((PetscObject)x,&is_viennacltype,VECSEQVIENNACL,VECMPIVIENNACL,VECVIENNACL,"");
1653:       if (is_viennacltype) {
1654:         VecViennaCLCopyFromGPU(x);
1655:       } else
1656: #endif
1657:       {
1658: #if defined(PETSC_HAVE_VECCUDA)
1659:         VecCUDACopyFromGPU(x);
1660: #endif
1661:       }
1662:     }
1663: #endif
1664:     *a = *((PetscScalar **)x->data);
1665:   } else if (x->ops->getarrayread) {
1666:     (*x->ops->getarrayread)(x,a);
1667:   } else {
1668:     (*x->ops->getarray)(x,(PetscScalar**)a);
1669:   }
1670:   return(0);
1671: }

1673: /*@C
1674:    VecGetArrays - Returns a pointer to the arrays in a set of vectors
1675:    that were created by a call to VecDuplicateVecs().  You MUST call
1676:    VecRestoreArrays() when you no longer need access to the array.

1678:    Logically Collective on Vec

1680:    Input Parameter:
1681: +  x - the vectors
1682: -  n - the number of vectors

1684:    Output Parameter:
1685: .  a - location to put pointer to the array

1687:    Fortran Note:
1688:    This routine is not supported in Fortran.

1690:    Level: intermediate

1692: .seealso: VecGetArray(), VecRestoreArrays()
1693: @*/
1694: PetscErrorCode  VecGetArrays(const Vec x[],PetscInt n,PetscScalar **a[])
1695: {
1697:   PetscInt       i;
1698:   PetscScalar    **q;

1704:   if (n <= 0) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Must get at least one array n = %D",n);
1705:   PetscMalloc1(n,&q);
1706:   for (i=0; i<n; ++i) {
1707:     VecGetArray(x[i],&q[i]);
1708:   }
1709:   *a = q;
1710:   return(0);
1711: }

1713: /*@C
1714:    VecRestoreArrays - Restores a group of vectors after VecGetArrays()
1715:    has been called.

1717:    Logically Collective on Vec

1719:    Input Parameters:
1720: +  x - the vector
1721: .  n - the number of vectors
1722: -  a - location of pointer to arrays obtained from VecGetArrays()

1724:    Notes:
1725:    For regular PETSc vectors this routine does not involve any copies. For
1726:    any special vectors that do not store local vector data in a contiguous
1727:    array, this routine will copy the data back into the underlying
1728:    vector data structure from the arrays obtained with VecGetArrays().

1730:    Fortran Note:
1731:    This routine is not supported in Fortran.

1733:    Level: intermediate

1735: .seealso: VecGetArrays(), VecRestoreArray()
1736: @*/
1737: PetscErrorCode  VecRestoreArrays(const Vec x[],PetscInt n,PetscScalar **a[])
1738: {
1740:   PetscInt       i;
1741:   PetscScalar    **q = *a;


1748:   for (i=0; i<n; ++i) {
1749:     VecRestoreArray(x[i],&q[i]);
1750:   }
1751:   PetscFree(q);
1752:   return(0);
1753: }

1755: /*@C
1756:    VecRestoreArray - Restores a vector after VecGetArray() has been called.

1758:    Logically Collective on Vec

1760:    Input Parameters:
1761: +  x - the vector
1762: -  a - location of pointer to array obtained from VecGetArray()

1764:    Level: beginner

1766:    Notes:
1767:    For regular PETSc vectors this routine does not involve any copies. For
1768:    any special vectors that do not store local vector data in a contiguous
1769:    array, this routine will copy the data back into the underlying
1770:    vector data structure from the array obtained with VecGetArray().

1772:    This routine actually zeros out the a pointer. This is to prevent accidental
1773:    us of the array after it has been restored. If you pass null for a it will
1774:    not zero the array pointer a.

1776:    Fortran Note:
1777:    This routine is used differently from Fortran 77
1778: $    Vec         x
1779: $    PetscScalar x_array(1)
1780: $    PetscOffset i_x
1781: $    PetscErrorCode ierr
1782: $       call VecGetArray(x,x_array,i_x,ierr)
1783: $
1784: $   Access first local entry in vector with
1785: $      value = x_array(i_x + 1)
1786: $
1787: $      ...... other code
1788: $       call VecRestoreArray(x,x_array,i_x,ierr)

1790:    See the Fortran chapter of the users manual and
1791:    petsc/src/snes/examples/tutorials/ex5f.F for details.
1792:    For Fortran 90 see VecRestoreArrayF90()

1794: .seealso: VecGetArray(), VecRestoreArrayRead(), VecRestoreArrays(), VecRestoreArrayF90(), VecRestoreArrayReadF90(), VecPlaceArray(), VecRestoreArray2d(),
1795:           VecGetArrayPair(), VecRestoreArrayPair()
1796: @*/
1797: PetscErrorCode VecRestoreArray(Vec x,PetscScalar **a)
1798: {

1803:   if (x->petscnative) {
1804: #if defined(PETSC_HAVE_VIENNACL) || defined(PETSC_HAVE_VECCUDA)
1805:     x->valid_GPU_array = PETSC_OFFLOAD_CPU;
1806: #endif
1807:   } else {
1808:     (*x->ops->restorearray)(x,a);
1809:   }
1810:   if (a) *a = NULL;
1811:   PetscObjectStateIncrease((PetscObject)x);
1812:   return(0);
1813: }

1815: /*@C
1816:    VecRestoreArrayRead - Restore array obtained with VecGetArrayRead()

1818:    Not Collective

1820:    Input Parameters:
1821: +  vec - the vector
1822: -  array - the array

1824:    Level: beginner

1826: .seealso: VecGetArray(), VecRestoreArray(), VecGetArrayPair(), VecRestoreArrayPair()
1827: @*/
1828: PetscErrorCode VecRestoreArrayRead(Vec x,const PetscScalar **a)
1829: {

1834:   if (x->petscnative) {
1835:     /* nothing */
1836:   } else if (x->ops->restorearrayread) {
1837:     (*x->ops->restorearrayread)(x,a);
1838:   } else {
1839:     (*x->ops->restorearray)(x,(PetscScalar**)a);
1840:   }
1841:   if (a) *a = NULL;
1842:   return(0);
1843: }

1845: /*@
1846:    VecPlaceArray - Allows one to replace the array in a vector with an
1847:    array provided by the user. This is useful to avoid copying an array
1848:    into a vector.

1850:    Not Collective

1852:    Input Parameters:
1853: +  vec - the vector
1854: -  array - the array

1856:    Notes:
1857:    You can return to the original array with a call to VecResetArray()

1859:    Level: developer

1861: .seealso: VecGetArray(), VecRestoreArray(), VecReplaceArray(), VecResetArray()

1863: @*/
1864: PetscErrorCode  VecPlaceArray(Vec vec,const PetscScalar array[])
1865: {

1872:   if (vec->ops->placearray) {
1873:     (*vec->ops->placearray)(vec,array);
1874:   } else SETERRQ(PetscObjectComm((PetscObject)vec),PETSC_ERR_SUP,"Cannot place array in this type of vector");
1875:   PetscObjectStateIncrease((PetscObject)vec);
1876:   return(0);
1877: }

1879: /*@C
1880:    VecReplaceArray - Allows one to replace the array in a vector with an
1881:    array provided by the user. This is useful to avoid copying an array
1882:    into a vector.

1884:    Not Collective

1886:    Input Parameters:
1887: +  vec - the vector
1888: -  array - the array

1890:    Notes:
1891:    This permanently replaces the array and frees the memory associated
1892:    with the old array.

1894:    The memory passed in MUST be obtained with PetscMalloc() and CANNOT be
1895:    freed by the user. It will be freed when the vector is destroy.

1897:    Not supported from Fortran

1899:    Level: developer

1901: .seealso: VecGetArray(), VecRestoreArray(), VecPlaceArray(), VecResetArray()

1903: @*/
1904: PetscErrorCode  VecReplaceArray(Vec vec,const PetscScalar array[])
1905: {

1911:   if (vec->ops->replacearray) {
1912:     (*vec->ops->replacearray)(vec,array);
1913:   } else SETERRQ(PetscObjectComm((PetscObject)vec),PETSC_ERR_SUP,"Cannot replace array in this type of vector");
1914:   PetscObjectStateIncrease((PetscObject)vec);
1915:   return(0);
1916: }

1918: /*MC
1919:     VecDuplicateVecsF90 - Creates several vectors of the same type as an existing vector
1920:     and makes them accessible via a Fortran90 pointer.

1922:     Synopsis:
1923:     VecDuplicateVecsF90(Vec x,PetscInt n,{Vec, pointer :: y(:)},integer ierr)

1925:     Collective on Vec

1927:     Input Parameters:
1928: +   x - a vector to mimic
1929: -   n - the number of vectors to obtain

1931:     Output Parameters:
1932: +   y - Fortran90 pointer to the array of vectors
1933: -   ierr - error code

1935:     Example of Usage:
1936: .vb
1937: #include <petsc/finclude/petscvec.h>
1938:     use petscvec

1940:     Vec x
1941:     Vec, pointer :: y(:)
1942:     ....
1943:     call VecDuplicateVecsF90(x,2,y,ierr)
1944:     call VecSet(y(2),alpha,ierr)
1945:     call VecSet(y(2),alpha,ierr)
1946:     ....
1947:     call VecDestroyVecsF90(2,y,ierr)
1948: .ve

1950:     Notes:
1951:     Not yet supported for all F90 compilers

1953:     Use VecDestroyVecsF90() to free the space.

1955:     Level: beginner

1957: .seealso:  VecDestroyVecsF90(), VecDuplicateVecs()

1959: M*/

1961: /*MC
1962:     VecRestoreArrayF90 - Restores a vector to a usable state after a call to
1963:     VecGetArrayF90().

1965:     Synopsis:
1966:     VecRestoreArrayF90(Vec x,{Scalar, pointer :: xx_v(:)},integer ierr)

1968:     Logically Collective on Vec

1970:     Input Parameters:
1971: +   x - vector
1972: -   xx_v - the Fortran90 pointer to the array

1974:     Output Parameter:
1975: .   ierr - error code

1977:     Example of Usage:
1978: .vb
1979: #include <petsc/finclude/petscvec.h>
1980:     use petscvec

1982:     PetscScalar, pointer :: xx_v(:)
1983:     ....
1984:     call VecGetArrayF90(x,xx_v,ierr)
1985:     xx_v(3) = a
1986:     call VecRestoreArrayF90(x,xx_v,ierr)
1987: .ve

1989:     Level: beginner

1991: .seealso:  VecGetArrayF90(), VecGetArray(), VecRestoreArray(), UsingFortran, VecRestoreArrayReadF90()

1993: M*/

1995: /*MC
1996:     VecDestroyVecsF90 - Frees a block of vectors obtained with VecDuplicateVecsF90().

1998:     Synopsis:
1999:     VecDestroyVecsF90(PetscInt n,{Vec, pointer :: x(:)},PetscErrorCode ierr)

2001:     Collective on Vec

2003:     Input Parameters:
2004: +   n - the number of vectors previously obtained
2005: -   x - pointer to array of vector pointers

2007:     Output Parameter:
2008: .   ierr - error code

2010:     Notes:
2011:     Not yet supported for all F90 compilers

2013:     Level: beginner

2015: .seealso:  VecDestroyVecs(), VecDuplicateVecsF90()

2017: M*/

2019: /*MC
2020:     VecGetArrayF90 - Accesses a vector array from Fortran90. For default PETSc
2021:     vectors, VecGetArrayF90() returns a pointer to the local data array. Otherwise,
2022:     this routine is implementation dependent. You MUST call VecRestoreArrayF90()
2023:     when you no longer need access to the array.

2025:     Synopsis:
2026:     VecGetArrayF90(Vec x,{Scalar, pointer :: xx_v(:)},integer ierr)

2028:     Logically Collective on Vec

2030:     Input Parameter:
2031: .   x - vector

2033:     Output Parameters:
2034: +   xx_v - the Fortran90 pointer to the array
2035: -   ierr - error code

2037:     Example of Usage:
2038: .vb
2039: #include <petsc/finclude/petscvec.h>
2040:     use petscvec

2042:     PetscScalar, pointer :: xx_v(:)
2043:     ....
2044:     call VecGetArrayF90(x,xx_v,ierr)
2045:     xx_v(3) = a
2046:     call VecRestoreArrayF90(x,xx_v,ierr)
2047: .ve

2049:     If you ONLY intend to read entries from the array and not change any entries you should use VecGetArrayReadF90().

2051:     Level: beginner

2053: .seealso:  VecRestoreArrayF90(), VecGetArray(), VecRestoreArray(), VecGetArrayReadF90(), UsingFortran

2055: M*/

2057:  /*MC
2058:     VecGetArrayReadF90 - Accesses a read only array from Fortran90. For default PETSc
2059:     vectors, VecGetArrayF90() returns a pointer to the local data array. Otherwise,
2060:     this routine is implementation dependent. You MUST call VecRestoreArrayReadF90()
2061:     when you no longer need access to the array.

2063:     Synopsis:
2064:     VecGetArrayReadF90(Vec x,{Scalar, pointer :: xx_v(:)},integer ierr)

2066:     Logically Collective on Vec

2068:     Input Parameter:
2069: .   x - vector

2071:     Output Parameters:
2072: +   xx_v - the Fortran90 pointer to the array
2073: -   ierr - error code

2075:     Example of Usage:
2076: .vb
2077: #include <petsc/finclude/petscvec.h>
2078:     use petscvec

2080:     PetscScalar, pointer :: xx_v(:)
2081:     ....
2082:     call VecGetArrayReadF90(x,xx_v,ierr)
2083:     a = xx_v(3)
2084:     call VecRestoreArrayReadF90(x,xx_v,ierr)
2085: .ve

2087:     If you intend to write entries into the array you must use VecGetArrayF90().

2089:     Level: beginner

2091: .seealso:  VecRestoreArrayReadF90(), VecGetArray(), VecRestoreArray(), VecGetArrayRead(), VecRestoreArrayRead(), VecGetArrayF90(), UsingFortran

2093: M*/

2095: /*MC
2096:     VecRestoreArrayReadF90 - Restores a readonly vector to a usable state after a call to
2097:     VecGetArrayReadF90().

2099:     Synopsis:
2100:     VecRestoreArrayReadF90(Vec x,{Scalar, pointer :: xx_v(:)},integer ierr)

2102:     Logically Collective on Vec

2104:     Input Parameters:
2105: +   x - vector
2106: -   xx_v - the Fortran90 pointer to the array

2108:     Output Parameter:
2109: .   ierr - error code

2111:     Example of Usage:
2112: .vb
2113: #include <petsc/finclude/petscvec.h>
2114:     use petscvec

2116:     PetscScalar, pointer :: xx_v(:)
2117:     ....
2118:     call VecGetArrayReadF90(x,xx_v,ierr)
2119:     a = xx_v(3)
2120:     call VecRestoreArrayReadF90(x,xx_v,ierr)
2121: .ve

2123:     Level: beginner

2125: .seealso:  VecGetArrayReadF90(), VecGetArray(), VecRestoreArray(), VecGetArrayRead(), VecRestoreArrayRead(),UsingFortran, VecRestoreArrayF90()

2127: M*/

2129: /*@C
2130:    VecGetArray2d - Returns a pointer to a 2d contiguous array that contains this
2131:    processor's portion of the vector data.  You MUST call VecRestoreArray2d()
2132:    when you no longer need access to the array.

2134:    Logically Collective

2136:    Input Parameter:
2137: +  x - the vector
2138: .  m - first dimension of two dimensional array
2139: .  n - second dimension of two dimensional array
2140: .  mstart - first index you will use in first coordinate direction (often 0)
2141: -  nstart - first index in the second coordinate direction (often 0)

2143:    Output Parameter:
2144: .  a - location to put pointer to the array

2146:    Level: developer

2148:   Notes:
2149:    For a vector obtained from DMCreateLocalVector() mstart and nstart are likely
2150:    obtained from the corner indices obtained from DMDAGetGhostCorners() while for
2151:    DMCreateGlobalVector() they are the corner indices from DMDAGetCorners(). In both cases
2152:    the arguments from DMDAGet[Ghost]Corners() are reversed in the call to VecGetArray2d().

2154:    For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.

2156:    Concepts: vector^accessing local values as 2d array

2158: .seealso: VecGetArray(), VecRestoreArray(), VecGetArrays(), VecGetArrayF90(), VecPlaceArray(),
2159:           VecRestoreArray2d(), DMDAVecGetArray(), DMDAVecRestoreArray(), VecGetArray3d(), VecRestoreArray3d(),
2160:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d()
2161: @*/
2162: PetscErrorCode  VecGetArray2d(Vec x,PetscInt m,PetscInt n,PetscInt mstart,PetscInt nstart,PetscScalar **a[])
2163: {
2165:   PetscInt       i,N;
2166:   PetscScalar    *aa;

2172:   VecGetLocalSize(x,&N);
2173:   if (m*n != N) SETERRQ3(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Local array size %D does not match 2d array dimensions %D by %D",N,m,n);
2174:   VecGetArray(x,&aa);

2176:   PetscMalloc1(m,a);
2177:   for (i=0; i<m; i++) (*a)[i] = aa + i*n - nstart;
2178:   *a -= mstart;
2179:   return(0);
2180: }

2182: /*@C
2183:    VecRestoreArray2d - Restores a vector after VecGetArray2d() has been called.

2185:    Logically Collective

2187:    Input Parameters:
2188: +  x - the vector
2189: .  m - first dimension of two dimensional array
2190: .  n - second dimension of the two dimensional array
2191: .  mstart - first index you will use in first coordinate direction (often 0)
2192: .  nstart - first index in the second coordinate direction (often 0)
2193: -  a - location of pointer to array obtained from VecGetArray2d()

2195:    Level: developer

2197:    Notes:
2198:    For regular PETSc vectors this routine does not involve any copies. For
2199:    any special vectors that do not store local vector data in a contiguous
2200:    array, this routine will copy the data back into the underlying
2201:    vector data structure from the array obtained with VecGetArray().

2203:    This routine actually zeros out the a pointer.

2205: .seealso: VecGetArray(), VecRestoreArray(), VecRestoreArrays(), VecRestoreArrayF90(), VecPlaceArray(),
2206:           VecGetArray2d(), VecGetArray3d(), VecRestoreArray3d(), DMDAVecGetArray(), DMDAVecRestoreArray()
2207:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d()
2208: @*/
2209: PetscErrorCode  VecRestoreArray2d(Vec x,PetscInt m,PetscInt n,PetscInt mstart,PetscInt nstart,PetscScalar **a[])
2210: {
2212:   void           *dummy;

2218:   dummy = (void*)(*a + mstart);
2219:   PetscFree(dummy);
2220:   VecRestoreArray(x,NULL);
2221:   return(0);
2222: }

2224: /*@C
2225:    VecGetArray1d - Returns a pointer to a 1d contiguous array that contains this
2226:    processor's portion of the vector data.  You MUST call VecRestoreArray1d()
2227:    when you no longer need access to the array.

2229:    Logically Collective

2231:    Input Parameter:
2232: +  x - the vector
2233: .  m - first dimension of two dimensional array
2234: -  mstart - first index you will use in first coordinate direction (often 0)

2236:    Output Parameter:
2237: .  a - location to put pointer to the array

2239:    Level: developer

2241:   Notes:
2242:    For a vector obtained from DMCreateLocalVector() mstart are likely
2243:    obtained from the corner indices obtained from DMDAGetGhostCorners() while for
2244:    DMCreateGlobalVector() they are the corner indices from DMDAGetCorners().

2246:    For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.

2248: .seealso: VecGetArray(), VecRestoreArray(), VecGetArrays(), VecGetArrayF90(), VecPlaceArray(),
2249:           VecRestoreArray2d(), DMDAVecGetArray(), DMDAVecRestoreArray(), VecGetArray3d(), VecRestoreArray3d(),
2250:           VecGetArray2d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d()
2251: @*/
2252: PetscErrorCode  VecGetArray1d(Vec x,PetscInt m,PetscInt mstart,PetscScalar *a[])
2253: {
2255:   PetscInt       N;

2261:   VecGetLocalSize(x,&N);
2262:   if (m != N) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Local array size %D does not match 1d array dimensions %D",N,m);
2263:   VecGetArray(x,a);
2264:   *a  -= mstart;
2265:   return(0);
2266: }

2268: /*@C
2269:    VecRestoreArray1d - Restores a vector after VecGetArray1d() has been called.

2271:    Logically Collective

2273:    Input Parameters:
2274: +  x - the vector
2275: .  m - first dimension of two dimensional array
2276: .  mstart - first index you will use in first coordinate direction (often 0)
2277: -  a - location of pointer to array obtained from VecGetArray21()

2279:    Level: developer

2281:    Notes:
2282:    For regular PETSc vectors this routine does not involve any copies. For
2283:    any special vectors that do not store local vector data in a contiguous
2284:    array, this routine will copy the data back into the underlying
2285:    vector data structure from the array obtained with VecGetArray1d().

2287:    This routine actually zeros out the a pointer.

2289:    Concepts: vector^accessing local values as 1d array

2291: .seealso: VecGetArray(), VecRestoreArray(), VecRestoreArrays(), VecRestoreArrayF90(), VecPlaceArray(),
2292:           VecGetArray2d(), VecGetArray3d(), VecRestoreArray3d(), DMDAVecGetArray(), DMDAVecRestoreArray()
2293:           VecGetArray1d(), VecRestoreArray2d(), VecGetArray4d(), VecRestoreArray4d()
2294: @*/
2295: PetscErrorCode  VecRestoreArray1d(Vec x,PetscInt m,PetscInt mstart,PetscScalar *a[])
2296: {

2302:   VecRestoreArray(x,NULL);
2303:   return(0);
2304: }


2307: /*@C
2308:    VecGetArray3d - Returns a pointer to a 3d contiguous array that contains this
2309:    processor's portion of the vector data.  You MUST call VecRestoreArray3d()
2310:    when you no longer need access to the array.

2312:    Logically Collective

2314:    Input Parameter:
2315: +  x - the vector
2316: .  m - first dimension of three dimensional array
2317: .  n - second dimension of three dimensional array
2318: .  p - third dimension of three dimensional array
2319: .  mstart - first index you will use in first coordinate direction (often 0)
2320: .  nstart - first index in the second coordinate direction (often 0)
2321: -  pstart - first index in the third coordinate direction (often 0)

2323:    Output Parameter:
2324: .  a - location to put pointer to the array

2326:    Level: developer

2328:   Notes:
2329:    For a vector obtained from DMCreateLocalVector() mstart, nstart, and pstart are likely
2330:    obtained from the corner indices obtained from DMDAGetGhostCorners() while for
2331:    DMCreateGlobalVector() they are the corner indices from DMDAGetCorners(). In both cases
2332:    the arguments from DMDAGet[Ghost]Corners() are reversed in the call to VecGetArray3d().

2334:    For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.

2336:    Concepts: vector^accessing local values as 3d array

2338: .seealso: VecGetArray(), VecRestoreArray(), VecGetArrays(), VecGetArrayF90(), VecPlaceArray(),
2339:           VecRestoreArray2d(), DMDAVecGetarray(), DMDAVecRestoreArray(), VecGetArray3d(), VecRestoreArray3d(),
2340:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d()
2341: @*/
2342: PetscErrorCode  VecGetArray3d(Vec x,PetscInt m,PetscInt n,PetscInt p,PetscInt mstart,PetscInt nstart,PetscInt pstart,PetscScalar ***a[])
2343: {
2345:   PetscInt       i,N,j;
2346:   PetscScalar    *aa,**b;

2352:   VecGetLocalSize(x,&N);
2353:   if (m*n*p != N) SETERRQ4(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Local array size %D does not match 3d array dimensions %D by %D by %D",N,m,n,p);
2354:   VecGetArray(x,&aa);

2356:   PetscMalloc1(m*sizeof(PetscScalar**)+m*n,a);
2357:   b    = (PetscScalar**)((*a) + m);
2358:   for (i=0; i<m; i++) (*a)[i] = b + i*n - nstart;
2359:   for (i=0; i<m; i++)
2360:     for (j=0; j<n; j++)
2361:       b[i*n+j] = aa + i*n*p + j*p - pstart;

2363:   *a -= mstart;
2364:   return(0);
2365: }

2367: /*@C
2368:    VecRestoreArray3d - Restores a vector after VecGetArray3d() has been called.

2370:    Logically Collective

2372:    Input Parameters:
2373: +  x - the vector
2374: .  m - first dimension of three dimensional array
2375: .  n - second dimension of the three dimensional array
2376: .  p - third dimension of the three dimensional array
2377: .  mstart - first index you will use in first coordinate direction (often 0)
2378: .  nstart - first index in the second coordinate direction (often 0)
2379: .  pstart - first index in the third coordinate direction (often 0)
2380: -  a - location of pointer to array obtained from VecGetArray3d()

2382:    Level: developer

2384:    Notes:
2385:    For regular PETSc vectors this routine does not involve any copies. For
2386:    any special vectors that do not store local vector data in a contiguous
2387:    array, this routine will copy the data back into the underlying
2388:    vector data structure from the array obtained with VecGetArray().

2390:    This routine actually zeros out the a pointer.

2392: .seealso: VecGetArray(), VecRestoreArray(), VecRestoreArrays(), VecRestoreArrayF90(), VecPlaceArray(),
2393:           VecGetArray2d(), VecGetArray3d(), VecRestoreArray3d(), DMDAVecGetArray(), DMDAVecRestoreArray()
2394:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d(), VecGet
2395: @*/
2396: PetscErrorCode  VecRestoreArray3d(Vec x,PetscInt m,PetscInt n,PetscInt p,PetscInt mstart,PetscInt nstart,PetscInt pstart,PetscScalar ***a[])
2397: {
2399:   void           *dummy;

2405:   dummy = (void*)(*a + mstart);
2406:   PetscFree(dummy);
2407:   VecRestoreArray(x,NULL);
2408:   return(0);
2409: }

2411: /*@C
2412:    VecGetArray4d - Returns a pointer to a 4d contiguous array that contains this
2413:    processor's portion of the vector data.  You MUST call VecRestoreArray4d()
2414:    when you no longer need access to the array.

2416:    Logically Collective

2418:    Input Parameter:
2419: +  x - the vector
2420: .  m - first dimension of four dimensional array
2421: .  n - second dimension of four dimensional array
2422: .  p - third dimension of four dimensional array
2423: .  q - fourth dimension of four dimensional array
2424: .  mstart - first index you will use in first coordinate direction (often 0)
2425: .  nstart - first index in the second coordinate direction (often 0)
2426: .  pstart - first index in the third coordinate direction (often 0)
2427: -  qstart - first index in the fourth coordinate direction (often 0)

2429:    Output Parameter:
2430: .  a - location to put pointer to the array

2432:    Level: beginner

2434:   Notes:
2435:    For a vector obtained from DMCreateLocalVector() mstart, nstart, and pstart are likely
2436:    obtained from the corner indices obtained from DMDAGetGhostCorners() while for
2437:    DMCreateGlobalVector() they are the corner indices from DMDAGetCorners(). In both cases
2438:    the arguments from DMDAGet[Ghost]Corners() are reversed in the call to VecGetArray3d().

2440:    For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.

2442:    Concepts: vector^accessing local values as 3d array

2444: .seealso: VecGetArray(), VecRestoreArray(), VecGetArrays(), VecGetArrayF90(), VecPlaceArray(),
2445:           VecRestoreArray2d(), DMDAVecGetarray(), DMDAVecRestoreArray(), VecGetArray3d(), VecRestoreArray3d(),
2446:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d()
2447: @*/
2448: PetscErrorCode  VecGetArray4d(Vec x,PetscInt m,PetscInt n,PetscInt p,PetscInt q,PetscInt mstart,PetscInt nstart,PetscInt pstart,PetscInt qstart,PetscScalar ****a[])
2449: {
2451:   PetscInt       i,N,j,k;
2452:   PetscScalar    *aa,***b,**c;

2458:   VecGetLocalSize(x,&N);
2459:   if (m*n*p*q != N) SETERRQ5(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Local array size %D does not match 4d array dimensions %D by %D by %D by %D",N,m,n,p,q);
2460:   VecGetArray(x,&aa);

2462:   PetscMalloc1(m*sizeof(PetscScalar***)+m*n*sizeof(PetscScalar**)+m*n*p,a);
2463:   b    = (PetscScalar***)((*a) + m);
2464:   c    = (PetscScalar**)(b + m*n);
2465:   for (i=0; i<m; i++) (*a)[i] = b + i*n - nstart;
2466:   for (i=0; i<m; i++)
2467:     for (j=0; j<n; j++)
2468:       b[i*n+j] = c + i*n*p + j*p - pstart;
2469:   for (i=0; i<m; i++)
2470:     for (j=0; j<n; j++)
2471:       for (k=0; k<p; k++)
2472:         c[i*n*p+j*p+k] = aa + i*n*p*q + j*p*q + k*q - qstart;
2473:   *a -= mstart;
2474:   return(0);
2475: }

2477: /*@C
2478:    VecRestoreArray4d - Restores a vector after VecGetArray3d() has been called.

2480:    Logically Collective

2482:    Input Parameters:
2483: +  x - the vector
2484: .  m - first dimension of four dimensional array
2485: .  n - second dimension of the four dimensional array
2486: .  p - third dimension of the four dimensional array
2487: .  q - fourth dimension of the four dimensional array
2488: .  mstart - first index you will use in first coordinate direction (often 0)
2489: .  nstart - first index in the second coordinate direction (often 0)
2490: .  pstart - first index in the third coordinate direction (often 0)
2491: .  qstart - first index in the fourth coordinate direction (often 0)
2492: -  a - location of pointer to array obtained from VecGetArray4d()

2494:    Level: beginner

2496:    Notes:
2497:    For regular PETSc vectors this routine does not involve any copies. For
2498:    any special vectors that do not store local vector data in a contiguous
2499:    array, this routine will copy the data back into the underlying
2500:    vector data structure from the array obtained with VecGetArray().

2502:    This routine actually zeros out the a pointer.

2504: .seealso: VecGetArray(), VecRestoreArray(), VecRestoreArrays(), VecRestoreArrayF90(), VecPlaceArray(),
2505:           VecGetArray2d(), VecGetArray3d(), VecRestoreArray3d(), DMDAVecGetArray(), DMDAVecRestoreArray()
2506:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d(), VecGet
2507: @*/
2508: PetscErrorCode  VecRestoreArray4d(Vec x,PetscInt m,PetscInt n,PetscInt p,PetscInt q,PetscInt mstart,PetscInt nstart,PetscInt pstart,PetscInt qstart,PetscScalar ****a[])
2509: {
2511:   void           *dummy;

2517:   dummy = (void*)(*a + mstart);
2518:   PetscFree(dummy);
2519:   VecRestoreArray(x,NULL);
2520:   return(0);
2521: }

2523: /*@C
2524:    VecGetArray2dRead - Returns a pointer to a 2d contiguous array that contains this
2525:    processor's portion of the vector data.  You MUST call VecRestoreArray2dRead()
2526:    when you no longer need access to the array.

2528:    Logically Collective

2530:    Input Parameter:
2531: +  x - the vector
2532: .  m - first dimension of two dimensional array
2533: .  n - second dimension of two dimensional array
2534: .  mstart - first index you will use in first coordinate direction (often 0)
2535: -  nstart - first index in the second coordinate direction (often 0)

2537:    Output Parameter:
2538: .  a - location to put pointer to the array

2540:    Level: developer

2542:   Notes:
2543:    For a vector obtained from DMCreateLocalVector() mstart and nstart are likely
2544:    obtained from the corner indices obtained from DMDAGetGhostCorners() while for
2545:    DMCreateGlobalVector() they are the corner indices from DMDAGetCorners(). In both cases
2546:    the arguments from DMDAGet[Ghost]Corners() are reversed in the call to VecGetArray2d().

2548:    For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.

2550:    Concepts: vector^accessing local values as 2d array

2552: .seealso: VecGetArray(), VecRestoreArray(), VecGetArrays(), VecGetArrayF90(), VecPlaceArray(),
2553:           VecRestoreArray2d(), DMDAVecGetArray(), DMDAVecRestoreArray(), VecGetArray3d(), VecRestoreArray3d(),
2554:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d()
2555: @*/
2556: PetscErrorCode  VecGetArray2dRead(Vec x,PetscInt m,PetscInt n,PetscInt mstart,PetscInt nstart,PetscScalar **a[])
2557: {
2558:   PetscErrorCode    ierr;
2559:   PetscInt          i,N;
2560:   const PetscScalar *aa;

2566:   VecGetLocalSize(x,&N);
2567:   if (m*n != N) SETERRQ3(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Local array size %D does not match 2d array dimensions %D by %D",N,m,n);
2568:   VecGetArrayRead(x,&aa);

2570:   PetscMalloc1(m,a);
2571:   for (i=0; i<m; i++) (*a)[i] = (PetscScalar*) aa + i*n - nstart;
2572:   *a -= mstart;
2573:   return(0);
2574: }

2576: /*@C
2577:    VecRestoreArray2dRead - Restores a vector after VecGetArray2dRead() has been called.

2579:    Logically Collective

2581:    Input Parameters:
2582: +  x - the vector
2583: .  m - first dimension of two dimensional array
2584: .  n - second dimension of the two dimensional array
2585: .  mstart - first index you will use in first coordinate direction (often 0)
2586: .  nstart - first index in the second coordinate direction (often 0)
2587: -  a - location of pointer to array obtained from VecGetArray2d()

2589:    Level: developer

2591:    Notes:
2592:    For regular PETSc vectors this routine does not involve any copies. For
2593:    any special vectors that do not store local vector data in a contiguous
2594:    array, this routine will copy the data back into the underlying
2595:    vector data structure from the array obtained with VecGetArray().

2597:    This routine actually zeros out the a pointer.

2599: .seealso: VecGetArray(), VecRestoreArray(), VecRestoreArrays(), VecRestoreArrayF90(), VecPlaceArray(),
2600:           VecGetArray2d(), VecGetArray3d(), VecRestoreArray3d(), DMDAVecGetArray(), DMDAVecRestoreArray()
2601:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d()
2602: @*/
2603: PetscErrorCode  VecRestoreArray2dRead(Vec x,PetscInt m,PetscInt n,PetscInt mstart,PetscInt nstart,PetscScalar **a[])
2604: {
2606:   void           *dummy;

2612:   dummy = (void*)(*a + mstart);
2613:   PetscFree(dummy);
2614:   VecRestoreArrayRead(x,NULL);
2615:   return(0);
2616: }

2618: /*@C
2619:    VecGetArray1dRead - Returns a pointer to a 1d contiguous array that contains this
2620:    processor's portion of the vector data.  You MUST call VecRestoreArray1dRead()
2621:    when you no longer need access to the array.

2623:    Logically Collective

2625:    Input Parameter:
2626: +  x - the vector
2627: .  m - first dimension of two dimensional array
2628: -  mstart - first index you will use in first coordinate direction (often 0)

2630:    Output Parameter:
2631: .  a - location to put pointer to the array

2633:    Level: developer

2635:   Notes:
2636:    For a vector obtained from DMCreateLocalVector() mstart are likely
2637:    obtained from the corner indices obtained from DMDAGetGhostCorners() while for
2638:    DMCreateGlobalVector() they are the corner indices from DMDAGetCorners().

2640:    For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.

2642: .seealso: VecGetArray(), VecRestoreArray(), VecGetArrays(), VecGetArrayF90(), VecPlaceArray(),
2643:           VecRestoreArray2d(), DMDAVecGetArray(), DMDAVecRestoreArray(), VecGetArray3d(), VecRestoreArray3d(),
2644:           VecGetArray2d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d()
2645: @*/
2646: PetscErrorCode  VecGetArray1dRead(Vec x,PetscInt m,PetscInt mstart,PetscScalar *a[])
2647: {
2649:   PetscInt       N;

2655:   VecGetLocalSize(x,&N);
2656:   if (m != N) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Local array size %D does not match 1d array dimensions %D",N,m);
2657:   VecGetArrayRead(x,(const PetscScalar**)a);
2658:   *a  -= mstart;
2659:   return(0);
2660: }

2662: /*@C
2663:    VecRestoreArray1dRead - Restores a vector after VecGetArray1dRead() has been called.

2665:    Logically Collective

2667:    Input Parameters:
2668: +  x - the vector
2669: .  m - first dimension of two dimensional array
2670: .  mstart - first index you will use in first coordinate direction (often 0)
2671: -  a - location of pointer to array obtained from VecGetArray21()

2673:    Level: developer

2675:    Notes:
2676:    For regular PETSc vectors this routine does not involve any copies. For
2677:    any special vectors that do not store local vector data in a contiguous
2678:    array, this routine will copy the data back into the underlying
2679:    vector data structure from the array obtained with VecGetArray1dRead().

2681:    This routine actually zeros out the a pointer.

2683:    Concepts: vector^accessing local values as 1d array

2685: .seealso: VecGetArray(), VecRestoreArray(), VecRestoreArrays(), VecRestoreArrayF90(), VecPlaceArray(),
2686:           VecGetArray2d(), VecGetArray3d(), VecRestoreArray3d(), DMDAVecGetArray(), DMDAVecRestoreArray()
2687:           VecGetArray1d(), VecRestoreArray2d(), VecGetArray4d(), VecRestoreArray4d()
2688: @*/
2689: PetscErrorCode  VecRestoreArray1dRead(Vec x,PetscInt m,PetscInt mstart,PetscScalar *a[])
2690: {

2696:   VecRestoreArrayRead(x,NULL);
2697:   return(0);
2698: }


2701: /*@C
2702:    VecGetArray3dRead - Returns a pointer to a 3d contiguous array that contains this
2703:    processor's portion of the vector data.  You MUST call VecRestoreArray3dRead()
2704:    when you no longer need access to the array.

2706:    Logically Collective

2708:    Input Parameter:
2709: +  x - the vector
2710: .  m - first dimension of three dimensional array
2711: .  n - second dimension of three dimensional array
2712: .  p - third dimension of three dimensional array
2713: .  mstart - first index you will use in first coordinate direction (often 0)
2714: .  nstart - first index in the second coordinate direction (often 0)
2715: -  pstart - first index in the third coordinate direction (often 0)

2717:    Output Parameter:
2718: .  a - location to put pointer to the array

2720:    Level: developer

2722:   Notes:
2723:    For a vector obtained from DMCreateLocalVector() mstart, nstart, and pstart are likely
2724:    obtained from the corner indices obtained from DMDAGetGhostCorners() while for
2725:    DMCreateGlobalVector() they are the corner indices from DMDAGetCorners(). In both cases
2726:    the arguments from DMDAGet[Ghost]Corners() are reversed in the call to VecGetArray3dRead().

2728:    For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.

2730:    Concepts: vector^accessing local values as 3d array

2732: .seealso: VecGetArray(), VecRestoreArray(), VecGetArrays(), VecGetArrayF90(), VecPlaceArray(),
2733:           VecRestoreArray2d(), DMDAVecGetarray(), DMDAVecRestoreArray(), VecGetArray3d(), VecRestoreArray3d(),
2734:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d()
2735: @*/
2736: PetscErrorCode  VecGetArray3dRead(Vec x,PetscInt m,PetscInt n,PetscInt p,PetscInt mstart,PetscInt nstart,PetscInt pstart,PetscScalar ***a[])
2737: {
2738:   PetscErrorCode    ierr;
2739:   PetscInt          i,N,j;
2740:   const PetscScalar *aa;
2741:   PetscScalar       **b;

2747:   VecGetLocalSize(x,&N);
2748:   if (m*n*p != N) SETERRQ4(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Local array size %D does not match 3d array dimensions %D by %D by %D",N,m,n,p);
2749:   VecGetArrayRead(x,&aa);

2751:   PetscMalloc1(m*sizeof(PetscScalar**)+m*n,a);
2752:   b    = (PetscScalar**)((*a) + m);
2753:   for (i=0; i<m; i++) (*a)[i] = b + i*n - nstart;
2754:   for (i=0; i<m; i++)
2755:     for (j=0; j<n; j++)
2756:       b[i*n+j] = (PetscScalar *)aa + i*n*p + j*p - pstart;

2758:   *a -= mstart;
2759:   return(0);
2760: }

2762: /*@C
2763:    VecRestoreArray3dRead - Restores a vector after VecGetArray3dRead() has been called.

2765:    Logically Collective

2767:    Input Parameters:
2768: +  x - the vector
2769: .  m - first dimension of three dimensional array
2770: .  n - second dimension of the three dimensional array
2771: .  p - third dimension of the three dimensional array
2772: .  mstart - first index you will use in first coordinate direction (often 0)
2773: .  nstart - first index in the second coordinate direction (often 0)
2774: .  pstart - first index in the third coordinate direction (often 0)
2775: -  a - location of pointer to array obtained from VecGetArray3dRead()

2777:    Level: developer

2779:    Notes:
2780:    For regular PETSc vectors this routine does not involve any copies. For
2781:    any special vectors that do not store local vector data in a contiguous
2782:    array, this routine will copy the data back into the underlying
2783:    vector data structure from the array obtained with VecGetArray().

2785:    This routine actually zeros out the a pointer.

2787: .seealso: VecGetArray(), VecRestoreArray(), VecRestoreArrays(), VecRestoreArrayF90(), VecPlaceArray(),
2788:           VecGetArray2d(), VecGetArray3d(), VecRestoreArray3d(), DMDAVecGetArray(), DMDAVecRestoreArray()
2789:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d(), VecGet
2790: @*/
2791: PetscErrorCode  VecRestoreArray3dRead(Vec x,PetscInt m,PetscInt n,PetscInt p,PetscInt mstart,PetscInt nstart,PetscInt pstart,PetscScalar ***a[])
2792: {
2794:   void           *dummy;

2800:   dummy = (void*)(*a + mstart);
2801:   PetscFree(dummy);
2802:   VecRestoreArrayRead(x,NULL);
2803:   return(0);
2804: }

2806: /*@C
2807:    VecGetArray4dRead - Returns a pointer to a 4d contiguous array that contains this
2808:    processor's portion of the vector data.  You MUST call VecRestoreArray4dRead()
2809:    when you no longer need access to the array.

2811:    Logically Collective

2813:    Input Parameter:
2814: +  x - the vector
2815: .  m - first dimension of four dimensional array
2816: .  n - second dimension of four dimensional array
2817: .  p - third dimension of four dimensional array
2818: .  q - fourth dimension of four dimensional array
2819: .  mstart - first index you will use in first coordinate direction (often 0)
2820: .  nstart - first index in the second coordinate direction (often 0)
2821: .  pstart - first index in the third coordinate direction (often 0)
2822: -  qstart - first index in the fourth coordinate direction (often 0)

2824:    Output Parameter:
2825: .  a - location to put pointer to the array

2827:    Level: beginner

2829:   Notes:
2830:    For a vector obtained from DMCreateLocalVector() mstart, nstart, and pstart are likely
2831:    obtained from the corner indices obtained from DMDAGetGhostCorners() while for
2832:    DMCreateGlobalVector() they are the corner indices from DMDAGetCorners(). In both cases
2833:    the arguments from DMDAGet[Ghost]Corners() are reversed in the call to VecGetArray3d().

2835:    For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.

2837:    Concepts: vector^accessing local values as 3d array

2839: .seealso: VecGetArray(), VecRestoreArray(), VecGetArrays(), VecGetArrayF90(), VecPlaceArray(),
2840:           VecRestoreArray2d(), DMDAVecGetarray(), DMDAVecRestoreArray(), VecGetArray3d(), VecRestoreArray3d(),
2841:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d()
2842: @*/
2843: PetscErrorCode  VecGetArray4dRead(Vec x,PetscInt m,PetscInt n,PetscInt p,PetscInt q,PetscInt mstart,PetscInt nstart,PetscInt pstart,PetscInt qstart,PetscScalar ****a[])
2844: {
2845:   PetscErrorCode    ierr;
2846:   PetscInt          i,N,j,k;
2847:   const PetscScalar *aa;
2848:   PetscScalar       ***b,**c;

2854:   VecGetLocalSize(x,&N);
2855:   if (m*n*p*q != N) SETERRQ5(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Local array size %D does not match 4d array dimensions %D by %D by %D by %D",N,m,n,p,q);
2856:   VecGetArrayRead(x,&aa);

2858:   PetscMalloc1(m*sizeof(PetscScalar***)+m*n*sizeof(PetscScalar**)+m*n*p,a);
2859:   b    = (PetscScalar***)((*a) + m);
2860:   c    = (PetscScalar**)(b + m*n);
2861:   for (i=0; i<m; i++) (*a)[i] = b + i*n - nstart;
2862:   for (i=0; i<m; i++)
2863:     for (j=0; j<n; j++)
2864:       b[i*n+j] = c + i*n*p + j*p - pstart;
2865:   for (i=0; i<m; i++)
2866:     for (j=0; j<n; j++)
2867:       for (k=0; k<p; k++)
2868:         c[i*n*p+j*p+k] = (PetscScalar*) aa + i*n*p*q + j*p*q + k*q - qstart;
2869:   *a -= mstart;
2870:   return(0);
2871: }

2873: /*@C
2874:    VecRestoreArray4dRead - Restores a vector after VecGetArray3d() has been called.

2876:    Logically Collective

2878:    Input Parameters:
2879: +  x - the vector
2880: .  m - first dimension of four dimensional array
2881: .  n - second dimension of the four dimensional array
2882: .  p - third dimension of the four dimensional array
2883: .  q - fourth dimension of the four dimensional array
2884: .  mstart - first index you will use in first coordinate direction (often 0)
2885: .  nstart - first index in the second coordinate direction (often 0)
2886: .  pstart - first index in the third coordinate direction (often 0)
2887: .  qstart - first index in the fourth coordinate direction (often 0)
2888: -  a - location of pointer to array obtained from VecGetArray4dRead()

2890:    Level: beginner

2892:    Notes:
2893:    For regular PETSc vectors this routine does not involve any copies. For
2894:    any special vectors that do not store local vector data in a contiguous
2895:    array, this routine will copy the data back into the underlying
2896:    vector data structure from the array obtained with VecGetArray().

2898:    This routine actually zeros out the a pointer.

2900: .seealso: VecGetArray(), VecRestoreArray(), VecRestoreArrays(), VecRestoreArrayF90(), VecPlaceArray(),
2901:           VecGetArray2d(), VecGetArray3d(), VecRestoreArray3d(), DMDAVecGetArray(), DMDAVecRestoreArray()
2902:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d(), VecGet
2903: @*/
2904: PetscErrorCode  VecRestoreArray4dRead(Vec x,PetscInt m,PetscInt n,PetscInt p,PetscInt q,PetscInt mstart,PetscInt nstart,PetscInt pstart,PetscInt qstart,PetscScalar ****a[])
2905: {
2907:   void           *dummy;

2913:   dummy = (void*)(*a + mstart);
2914:   PetscFree(dummy);
2915:   VecRestoreArrayRead(x,NULL);
2916:   return(0);
2917: }

2919: #if defined(PETSC_USE_DEBUG)

2921: /*@
2922:    VecLockGet  - Gets the current lock status of a vector

2924:    Logically Collective on Vec

2926:    Input Parameter:
2927: .  x - the vector

2929:    Output Parameter:
2930: .  state - greater than zero indicates the vector is still locked

2932:    Level: beginner

2934:    Concepts: vector^accessing local values

2936: .seealso: VecRestoreArray(), VecGetArrayRead(), VecLockPush(), VecLockGet()
2937: @*/
2938: PetscErrorCode VecLockGet(Vec x,PetscInt *state)
2939: {
2942:   *state = x->lock;
2943:   return(0);
2944: }

2946: /*@
2947:    VecLockPush  - Lock a vector from writing

2949:    Logically Collective on Vec

2951:    Input Parameter:
2952: .  x - the vector

2954:    Notes:
2955:     If this is set then calls to VecGetArray() or VecSetValues() or any other routines that change the vectors values will fail.

2957:     Call VecLockPop() to remove the latest lock

2959:    Level: beginner

2961:    Concepts: vector^accessing local values

2963: .seealso: VecRestoreArray(), VecGetArrayRead(), VecLockPop(), VecLockGet()
2964: @*/
2965: PetscErrorCode VecLockPush(Vec x)
2966: {
2969:   x->lock++;
2970:   return(0);
2971: }

2973: /*@
2974:    VecLockPop  - Unlock a vector from writing

2976:    Logically Collective on Vec

2978:    Input Parameter:
2979: .  x - the vector

2981:    Level: beginner

2983:    Concepts: vector^accessing local values

2985: .seealso: VecRestoreArray(), VecGetArrayRead(), VecLockPush(), VecLockGet()
2986: @*/
2987: PetscErrorCode VecLockPop(Vec x)
2988: {
2991:   x->lock--;
2992:   if (x->lock < 0) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Vector has been unlocked too many times");
2993:   return(0);
2994: }

2996: #endif